Commit Graph

30546 Commits

Author SHA1 Message Date
Phil Elwell
a26b1595c7 cgroup: Disable cgroup "memory" by default
Some Raspberry Pis have limited RAM and most users won't use the
cgroup memory support so it is disabled by default. Enable with:

    cgroup_enable=memory

See: https://github.com/raspberrypi/linux/issues/1950

Signed-off-by: Phil Elwell <phil@raspberrypi.org>
2019-10-11 17:35:08 +01:00
Phil Elwell
e27b03f7fa Protect __release_resource against resources without parents
Without this patch, removing a device tree overlay can crash here.

Signed-off-by: Phil Elwell <phil@raspberrypi.org>
2019-10-11 17:35:00 +01:00
Tetsuo Handa
f6e1c74f56 kexec: bail out upon SIGKILL when allocating memory.
commit 7c3a6aedcd upstream.

syzbot found that a thread can stall for minutes inside kexec_load() after
that thread was killed by SIGKILL [1].  It turned out that the reproducer
was trying to allocate 2408MB of memory using kimage_alloc_page() from
kimage_load_normal_segment().  Let's check for SIGKILL before doing memory
allocation.

[1] https://syzkaller.appspot.com/bug?id=a0e3436829698d5824231251fad9d8e998f94f5e

Link: http://lkml.kernel.org/r/993c9185-d324-2640-d061-bed2dd18b1f7@I-love.SAKURA.ne.jp
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reported-by: syzbot <syzbot+8ab2d0f39fb79fe6ca40@syzkaller.appspotmail.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-07 18:59:40 +02:00
Miroslav Benes
a7ef43bf90 livepatch: Nullify obj->mod in klp_module_coming()'s error path
[ Upstream commit 4ff96fb52c ]

klp_module_coming() is called for every module appearing in the system.
It sets obj->mod to a patched module for klp_object obj. Unfortunately
it leaves it set even if an error happens later in the function and the
patched module is not allowed to be loaded.

klp_is_object_loaded() uses obj->mod variable and could currently give a
wrong return value. The bug is probably harmless as of now.

Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-07 18:59:28 +02:00
Thadeu Lima de Souza Cascardo
f683465f05 alarmtimer: Use EOPNOTSUPP instead of ENOTSUPP
commit f18ddc13af upstream.

ENOTSUPP is not supposed to be returned to userspace. This was found on an
OpenPower machine, where the RTC does not support set_alarm.

On that system, a clock_nanosleep(CLOCK_REALTIME_ALARM, ...) results in
"524 Unknown error 524"

Replace it with EOPNOTSUPP which results in the expected "95 Operation not
supported" error.

Fixes: 1c6b39ad3f (alarmtimers: Return -ENOTSUPP if no RTC device is present)
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190903171802.28314-1-cascardo@canonical.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05 13:14:08 +02:00
Peter Zijlstra
f0028c2bed rcu/tree: Fix SCHED_FIFO params
[ Upstream commit 130d9c331b ]

A rather embarrasing mistake had us call sched_setscheduler() before
initializing the parameters passed to it.

Fixes: 1a763fd7c6 ("rcu/tree: Call setschedule() gp ktread to SCHED_FIFO outside of atomic region")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:14:02 +02:00
Vincent Whitchurch
44602a8a14 printk: Do not lose last line in kmsg buffer dump
commit c9dccacfcc upstream.

kmsg_dump_get_buffer() is supposed to select all the youngest log
messages which fit into the provided buffer.  It determines the correct
start index by using msg_print_text() with a NULL buffer to calculate
the size of each entry.  However, when performing the actual writes,
msg_print_text() only writes the entry to the buffer if the written len
is lesser than the size of the buffer.  So if the lengths of the
selected youngest log messages happen to precisely fill up the provided
buffer, the last log message is not included.

We don't want to modify msg_print_text() to fill up the buffer and start
returning a length which is equal to the size of the buffer, since
callers of its other users, such as kmsg_dump_get_line(), depend upon
the current behaviour.

Instead, fix kmsg_dump_get_buffer() to compensate for this.

For example, with the following two final prints:

[    6.427502] AAAAAAAAAAAAA
[    6.427769] BBBBBBBB12345

A dump of a 64-byte buffer filled by kmsg_dump_get_buffer(), before this
patch:

 00000000: 3c 30 3e 5b 20 20 20 20 36 2e 35 32 32 31 39 37  <0>[    6.522197
 00000010: 5d 20 41 41 41 41 41 41 41 41 41 41 41 41 41 0a  ] AAAAAAAAAAAAA.
 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

After this patch:

 00000000: 3c 30 3e 5b 20 20 20 20 36 2e 34 35 36 36 37 38  <0>[    6.456678
 00000010: 5d 20 42 42 42 42 42 42 42 42 31 32 33 34 35 0a  ] BBBBBBBB12345.
 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................
 00000030: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ................

Link: http://lkml.kernel.org/r/20190711142937.4083-1-vincent.whitchurch@axis.com
Fixes: e2ae715d66 ("kmsg - kmsg_dump() use iterator to receive log buffer content")
To: rostedt@goodmis.org
Cc: linux-kernel@vger.kernel.org
Cc: <stable@vger.kernel.org> # v3.5+
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05 13:14:01 +02:00
Miles Chen
de6fea9fcf sched/psi: Correct overly pessimistic size calculation
[ Upstream commit 4adcdcea71 ]

When passing a equal or more then 32 bytes long string to psi_write(),
psi_write() copies 31 bytes to its buf and overwrites buf[30]
with '\0'. Which makes the input string 1 byte shorter than
it should be.

Fix it by copying sizeof(buf) bytes when nbytes >= sizeof(buf).

This does not cause problems in normal use case like:
"some 500000 10000000" or "full 500000 10000000" because they
are less than 32 bytes in length.

	/* assuming nbytes == 35 */
	char buf[32];

	buf_size = min(nbytes, (sizeof(buf) - 1)); /* buf_size = 31 */
	if (copy_from_user(buf, user_buf, buf_size))
		return -EFAULT;

	buf[buf_size - 1] = '\0'; /* buf[30] = '\0' */

Before:

 %cd /proc/pressure/
 %echo "123456789|123456789|123456789|1234" > memory
 [   22.473497] nbytes=35,buf_size=31
 [   22.473775] 123456789|123456789|123456789| (print 30 chars)
 %sh: write error: Invalid argument

 %echo "123456789|123456789|123456789|1" > memory
 [   64.916162] nbytes=32,buf_size=31
 [   64.916331] 123456789|123456789|123456789| (print 30 chars)
 %sh: write error: Invalid argument

After:

 %cd /proc/pressure/
 %echo "123456789|123456789|123456789|1234" > memory
 [  254.837863] nbytes=35,buf_size=32
 [  254.838541] 123456789|123456789|123456789|1 (print 31 chars)
 %sh: write error: Invalid argument

 %echo "123456789|123456789|123456789|1" > memory
 [ 9965.714935] nbytes=32,buf_size=32
 [ 9965.715096] 123456789|123456789|123456789|1 (print 31 chars)
 %sh: write error: Invalid argument

Also remove the superfluous parentheses.

Signed-off-by: Miles Chen <miles.chen@mediatek.com>
Cc: <linux-mediatek@lists.infradead.org>
Cc: <wsd_upstream@mediatek.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190912103452.13281-1-miles.chen@mediatek.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:55 +02:00
Masami Hiramatsu
daecd8d05e kprobes: Prohibit probing on BUG() and WARN() address
[ Upstream commit e336b40277 ]

Since BUG() and WARN() may use a trap (e.g. UD2 on x86) to
get the address where the BUG() has occurred, kprobes can not
do single-step out-of-line that instruction. So prohibit
probing on such address.

Without this fix, if someone put a kprobe on WARN(), the
kernel will crash with invalid opcode error instead of
outputing warning message, because kernel can not find
correct bug address.

Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Acked-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S . Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naveen N . Rao <naveen.n.rao@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/156750890133.19112.3393666300746167111.stgit@devnote2
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:53 +02:00
Douglas RAILLARD
12dae85048 sched/cpufreq: Align trace event behavior of fast switching
[ Upstream commit 77c84dd188 ]

Fast switching path only emits an event for the CPU of interest, whereas the
regular path emits an event for all the CPUs that had their frequency changed,
i.e. all the CPUs sharing the same policy.

With the current behavior, looking at cpu_frequency event for a given CPU that
is using the fast switching path will not give the correct frequency signal.

Signed-off-by: Douglas RAILLARD <douglas.raillard@arm.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:50 +02:00
Thomas Gleixner
de23b986dd posix-cpu-timers: Sanitize bogus WARNONS
[ Upstream commit 692117c1f7 ]

Warning when p == NULL and then proceeding and dereferencing p does not
make any sense as the kernel will crash with a NULL pointer dereference
right away.

Bailing out when p == NULL and returning an error code does not cure the
underlying problem which caused p to be NULL. Though it might allow to
do proper debugging.

Same applies to the clock id check in set_process_cpu_timer().

Clean them up and make them return without trying to do further damage.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lkml.kernel.org/r/20190819143801.846497772@linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:45 +02:00
Peter Zijlstra
503ac6efb2 idle: Prevent late-arriving interrupts from disrupting offline
[ Upstream commit e78a7614f3 ]

Scheduling-clock interrupts can arrive late in the CPU-offline process,
after idle entry and the subsequent call to cpuhp_report_idle_dead().
Once execution passes the call to rcu_report_dead(), RCU is ignoring
the CPU, which results in lockdep complaints when the interrupt handler
uses RCU:

------------------------------------------------------------------------

=============================
WARNING: suspicious RCU usage
5.2.0-rc1+ #681 Not tainted
-----------------------------
kernel/sched/fair.c:9542 suspicious rcu_dereference_check() usage!

other info that might help us debug this:

RCU used illegally from offline CPU!
rcu_scheduler_active = 2, debug_locks = 1
no locks held by swapper/5/0.

stack backtrace:
CPU: 5 PID: 0 Comm: swapper/5 Not tainted 5.2.0-rc1+ #681
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS Bochs 01/01/2011
Call Trace:
 <IRQ>
 dump_stack+0x5e/0x8b
 trigger_load_balance+0xa8/0x390
 ? tick_sched_do_timer+0x60/0x60
 update_process_times+0x3b/0x50
 tick_sched_handle+0x2f/0x40
 tick_sched_timer+0x32/0x70
 __hrtimer_run_queues+0xd3/0x3b0
 hrtimer_interrupt+0x11d/0x270
 ? sched_clock_local+0xc/0x74
 smp_apic_timer_interrupt+0x79/0x200
 apic_timer_interrupt+0xf/0x20
 </IRQ>
RIP: 0010:delay_tsc+0x22/0x50
Code: ff 0f 1f 80 00 00 00 00 65 44 8b 05 18 a7 11 48 0f ae e8 0f 31 48 89 d6 48 c1 e6 20 48 09 c6 eb 0e f3 90 65 8b 05 fe a6 11 48 <41> 39 c0 75 18 0f ae e8 0f 31 48 c1 e2 20 48 09 c2 48 89 d0 48 29
RSP: 0000:ffff8f92c0157ed0 EFLAGS: 00000212 ORIG_RAX: ffffffffffffff13
RAX: 0000000000000005 RBX: ffff8c861f356400 RCX: ffff8f92c0157e64
RDX: 000000321214c8cc RSI: 00000032120daa7f RDI: 0000000000260f15
RBP: 0000000000000005 R08: 0000000000000005 R09: 0000000000000000
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000000
R13: 0000000000000000 R14: ffff8c861ee18000 R15: ffff8c861ee18000
 cpuhp_report_idle_dead+0x31/0x60
 do_idle+0x1d5/0x200
 ? _raw_spin_unlock_irqrestore+0x2d/0x40
 cpu_startup_entry+0x14/0x20
 start_secondary+0x151/0x170
 secondary_startup_64+0xa4/0xb0

------------------------------------------------------------------------

This happens rarely, but can be forced by happen more often by
placing delays in cpuhp_report_idle_dead() following the call to
rcu_report_dead().  With this in place, the following rcutorture
scenario reproduces the problem within a few minutes:

tools/testing/selftests/rcutorture/bin/kvm.sh --cpus 8 --duration 5 --kconfig "CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_PROVE_LOCKING=y" --configs "TREE04"

This commit uses the crude but effective expedient of moving the disabling
of interrupts within the idle loop to precede the cpu_is_offline()
check.  It also invokes tick_nohz_idle_stop_tick() instead of
tick_nohz_idle_stop_tick_protected() to shut off the scheduling-clock
interrupt.

Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
[ paulmck: Revert tick_nohz_idle_stop_tick_protected() removal, new callers. ]
Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:37 +02:00
Phil Auld
b2ee96a78c sched/fair: Use rq_lock/unlock in online_fair_sched_group
[ Upstream commit a46d14eca7 ]

Enabling WARN_DOUBLE_CLOCK in /sys/kernel/debug/sched_features causes
warning to fire in update_rq_clock. This seems to be caused by onlining
a new fair sched group not using the rq lock wrappers.

  [] rq->clock_update_flags & RQCF_UPDATED
  [] WARNING: CPU: 5 PID: 54385 at kernel/sched/core.c:210 update_rq_clock+0xec/0x150

  [] Call Trace:
  []  online_fair_sched_group+0x53/0x100
  []  cpu_cgroup_css_online+0x16/0x20
  []  online_css+0x1c/0x60
  []  cgroup_apply_control_enable+0x231/0x3b0
  []  cgroup_mkdir+0x41b/0x530
  []  kernfs_iop_mkdir+0x61/0xa0
  []  vfs_mkdir+0x108/0x1a0
  []  do_mkdirat+0x77/0xe0
  []  do_syscall_64+0x55/0x1d0
  []  entry_SYSCALL_64_after_hwframe+0x44/0xa9

Using the wrappers in online_fair_sched_group instead of the raw locking
removes this warning.

[ tglx: Use rq_*lock_irq() ]

Signed-off-by: Phil Auld <pauld@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Vincent Guittot <vincent.guittot@linaro.org>
Cc: Ingo Molnar <mingo@kernel.org>
Link: https://lkml.kernel.org/r/20190801133749.11033-1-pauld@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:37 +02:00
Juri Lelli
be86447601 rcu/tree: Call setschedule() gp ktread to SCHED_FIFO outside of atomic region
[ Upstream commit 1a763fd7c6 ]

sched_setscheduler() needs to acquire cpuset_rwsem, but it is currently
called from an invalid (atomic) context by rcu_spawn_gp_kthread().

Fix that by simply moving sched_setscheduler_nocheck() call outside of
the atomic region, as it doesn't actually require to be guarded by
rcu_node lock.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: mathieu.poirier@linaro.org
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-8-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:29 +02:00
Juri Lelli
2965c2e1ec sched/deadline: Fix bandwidth accounting at all levels after offline migration
[ Upstream commit 59d06cea11 ]

If a task happens to be throttled while the CPU it was running on gets
hotplugged off, the bandwidth associated with the task is not correctly
migrated with it when the replenishment timer fires (offline_migration).

Fix things up, for this_bw, running_bw and total_bw, when replenishment
timer fires and task is migrated (dl_task_offline_migration()).

Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: bristot@redhat.com
Cc: claudio@evidence.eu.com
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: mathieu.poirier@linaro.org
Cc: rostedt@goodmis.org
Cc: tj@kernel.org
Cc: tommaso.cucinotta@santannapisa.it
Link: https://lkml.kernel.org/r/20190719140000.31694-5-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:29 +02:00
Juri Lelli
e75ff42011 sched/core: Fix CPU controller for !RT_GROUP_SCHED
[ Upstream commit a07db5c086 ]

On !CONFIG_RT_GROUP_SCHED configurations it is currently not possible to
move RT tasks between cgroups to which CPU controller has been attached;
but it is oddly possible to first move tasks around and then make them
RT (setschedule to FIFO/RR).

E.g.:

  # mkdir /sys/fs/cgroup/cpu,cpuacct/group1
  # chrt -fp 10 $$
  # echo $$ > /sys/fs/cgroup/cpu,cpuacct/group1/tasks
  bash: echo: write error: Invalid argument
  # chrt -op 0 $$
  # echo $$ > /sys/fs/cgroup/cpu,cpuacct/group1/tasks
  # chrt -fp 10 $$
  # cat /sys/fs/cgroup/cpu,cpuacct/group1/tasks
  2345
  2598
  # chrt -p 2345
  pid 2345's current scheduling policy: SCHED_FIFO
  pid 2345's current scheduling priority: 10

Also, as Michal noted, it is currently not possible to enable CPU
controller on unified hierarchy with !CONFIG_RT_GROUP_SCHED (if there
are any kernel RT threads in root cgroup, they can't be migrated to the
newly created CPU controller's root in cgroup_update_dfl_csses()).

Existing code comes with a comment saying the "we don't support RT-tasks
being in separate groups". Such comment is however stale and belongs to
pre-RT_GROUP_SCHED times. Also, it doesn't make much sense for
!RT_GROUP_ SCHED configurations, since checks related to RT bandwidth
are not performed at all in these cases.

Make moving RT tasks between CPU controller groups viable by removing
special case check for RT (and DEADLINE) tasks.

Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: lizefan@huawei.com
Cc: longman@redhat.com
Cc: luca.abeni@santannapisa.it
Cc: rostedt@goodmis.org
Link: https://lkml.kernel.org/r/20190719063455.27328-1-juri.lelli@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:28 +02:00
Vincent Guittot
a02f3db899 sched/fair: Fix imbalance due to CPU affinity
[ Upstream commit f6cad8df6b ]

The load_balance() has a dedicated mecanism to detect when an imbalance
is due to CPU affinity and must be handled at parent level. In this case,
the imbalance field of the parent's sched_group is set.

The description of sg_imbalanced() gives a typical example of two groups
of 4 CPUs each and 4 tasks each with a cpumask covering 1 CPU of the first
group and 3 CPUs of the second group. Something like:

	{ 0 1 2 3 } { 4 5 6 7 }
	        *     * * *

But the load_balance fails to fix this UC on my octo cores system
made of 2 clusters of quad cores.

Whereas the load_balance is able to detect that the imbalanced is due to
CPU affinity, it fails to fix it because the imbalance field is cleared
before letting parent level a chance to run. In fact, when the imbalance is
detected, the load_balance reruns without the CPU with pinned tasks. But
there is no other running tasks in the situation described above and
everything looks balanced this time so the imbalance field is immediately
cleared.

The imbalance field should not be cleared if there is no other task to move
when the imbalance is detected.

Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1561996022-28829-1-git-send-email-vincent.guittot@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:28 +02:00
Paul E. McKenney
2af6db20ce time/tick-broadcast: Fix tick_broadcast_offline() lockdep complaint
[ Upstream commit 84ec3a0787 ]

time/tick-broadcast: Fix tick_broadcast_offline() lockdep complaint

The TASKS03 and TREE04 rcutorture scenarios produce the following
lockdep complaint:

	WARNING: inconsistent lock state
	5.2.0-rc1+ #513 Not tainted
	--------------------------------
	inconsistent {IN-HARDIRQ-W} -> {HARDIRQ-ON-W} usage.
	migration/1/14 [HC0[0]:SC0[0]:HE1:SE1] takes:
	(____ptrval____) (tick_broadcast_lock){?...}, at: tick_broadcast_offline+0xf/0x70
	{IN-HARDIRQ-W} state was registered at:
	  lock_acquire+0xb0/0x1c0
	  _raw_spin_lock_irqsave+0x3c/0x50
	  tick_broadcast_switch_to_oneshot+0xd/0x40
	  tick_switch_to_oneshot+0x4f/0xd0
	  hrtimer_run_queues+0xf3/0x130
	  run_local_timers+0x1c/0x50
	  update_process_times+0x1c/0x50
	  tick_periodic+0x26/0xc0
	  tick_handle_periodic+0x1a/0x60
	  smp_apic_timer_interrupt+0x80/0x2a0
	  apic_timer_interrupt+0xf/0x20
	  _raw_spin_unlock_irqrestore+0x4e/0x60
	  rcu_nocb_gp_kthread+0x15d/0x590
	  kthread+0xf3/0x130
	  ret_from_fork+0x3a/0x50
	irq event stamp: 171
	hardirqs last  enabled at (171): [<ffffffff8a201a37>] trace_hardirqs_on_thunk+0x1a/0x1c
	hardirqs last disabled at (170): [<ffffffff8a201a53>] trace_hardirqs_off_thunk+0x1a/0x1c
	softirqs last  enabled at (0): [<ffffffff8a264ee0>] copy_process.part.56+0x650/0x1cb0
	softirqs last disabled at (0): [<0000000000000000>] 0x0

        [...]

To reproduce, run the following rcutorture test:

 $ tools/testing/selftests/rcutorture/bin/kvm.sh --duration 5 --kconfig "CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_PROVE_LOCKING=y" --configs "TASKS03 TREE04"

It turns out that tick_broadcast_offline() was an innocent bystander.
After all, interrupts are supposed to be disabled throughout
take_cpu_down(), and therefore should have been disabled upon entry to
tick_offline_cpu() and thus to tick_broadcast_offline().  This suggests
that one of the CPU-hotplug notifiers was incorrectly enabling interrupts,
and leaving them enabled on return.

Some debugging code showed that the culprit was sched_cpu_dying().
It had irqs enabled after return from sched_tick_stop().  Which in turn
had irqs enabled after return from cancel_delayed_work_sync().  Which is a
wrapper around __cancel_work_timer().  Which can sleep in the case where
something else is concurrently trying to cancel the same delayed work,
and as Thomas Gleixner pointed out on IRC, sleeping is a decidedly bad
idea when you are invoked from take_cpu_down(), regardless of the state
you leave interrupts in upon return.

Code inspection located no reason why the delayed work absolutely
needed to be canceled from sched_tick_stop():  The work is not
bound to the outgoing CPU by design, given that the whole point is
to collect statistics without disturbing the outgoing CPU.

This commit therefore simply drops the cancel_delayed_work_sync() from
sched_tick_stop().  Instead, a new ->state field is added to the tick_work
structure so that the delayed-work handler function sched_tick_remote()
can avoid reposting itself.  A cpu_is_offline() check is also added to
sched_tick_remote() to avoid mucking with the state of an offlined CPU
(though it does appear safe to do so).  The sched_tick_start() and
sched_tick_stop() functions also update ->state, and sched_tick_start()
also schedules the delayed work if ->state indicates that it is not
already in flight.

Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com>
[ paulmck: Apply Peter Zijlstra and Frederic Weisbecker atomics feedback. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190625165238.GJ26519@linux.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05 13:13:27 +02:00
Marc Zyngier
6612f6edf1 kallsyms: Don't let kallsyms_lookup_size_offset() fail on retrieving the first symbol
[ Upstream commit 2a1a3fa0f2 ]

An arm64 kernel configured with

  CONFIG_KPROBES=y
  CONFIG_KALLSYMS=y
  # CONFIG_KALLSYMS_ALL is not set
  CONFIG_KALLSYMS_BASE_RELATIVE=y

reports the following kprobe failure:

  [    0.032677] kprobes: failed to populate blacklist: -22
  [    0.033376] Please take care of using kprobes.

It appears that kprobe fails to retrieve the symbol at address
0xffff000010081000, despite this symbol being in System.map:

  ffff000010081000 T __exception_text_start

This symbol is part of the first group of aliases in the
kallsyms_offsets array (symbol names generated using ugly hacks in
scripts/kallsyms.c):

  kallsyms_offsets:
          .long   0x1000 // do_undefinstr
          .long   0x1000 // efi_header_end
          .long   0x1000 // _stext
          .long   0x1000 // __exception_text_start
          .long   0x12b0 // do_cp15instr

Looking at the implementation of get_symbol_pos(), it returns the
lowest index for aliasing symbols. In this case, it return 0.

But kallsyms_lookup_size_offset() considers 0 as a failure, which
is obviously wrong (there is definitely a valid symbol living there).
In turn, the kprobe blacklisting stops abruptly, hence the original
error.

A CONFIG_KALLSYMS_ALL kernel wouldn't fail as there is always
some random symbols at the beginning of this array, which are never
looked up via kallsyms_lookup_size_offset.

Fix it by considering that get_symbol_pos() is always successful
(which is consistent with the other uses of this function).

Fixes: ffc5089196 ("[PATCH] Create kallsyms_lookup_size_offset()")
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-21 07:18:37 +02:00
Jessica Yu
00ab9eeb03 modules: always page-align module section allocations
commit 38f054d549 upstream.

Some arches (e.g., arm64, x86) have moved towards non-executable
module_alloc() allocations for security hardening reasons. That means
that the module loader will need to set the text section of a module to
executable, regardless of whether or not CONFIG_STRICT_MODULE_RWX is set.

When CONFIG_STRICT_MODULE_RWX=y, module section allocations are always
page-aligned to handle memory rwx permissions. On some arches with
CONFIG_STRICT_MODULE_RWX=n however, when setting the module text to
executable, the BUG_ON() in frob_text() gets triggered since module
section allocations are not page-aligned when CONFIG_STRICT_MODULE_RWX=n.
Since the set_memory_* API works with pages, and since we need to call
set_memory_x() regardless of whether CONFIG_STRICT_MODULE_RWX is set, we
might as well page-align all module section allocations for ease of
managing rwx permissions of module sections (text, rodata, etc).

Fixes: 2eef1399a8 ("modules: fix BUG when load module with rodata=n")
Reported-by: Martin Kaiser <lists@kaiser.cx>
Reported-by: Bartosz Golaszewski <brgl@bgdev.pl>
Tested-by: David Lechner <david@lechnology.com>
Tested-by: Martin Kaiser <martin@kaiser.cx>
Tested-by: Bartosz Golaszewski <bgolaszewski@baylibre.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 09:11:07 +02:00
Yang Yingliang
ec93d0db91 modules: fix compile error if don't have strict module rwx
commit 93651f80dc upstream.

If CONFIG_ARCH_HAS_STRICT_MODULE_RWX is not defined,
we need stub for module_enable_nx() and module_enable_x().

If CONFIG_ARCH_HAS_STRICT_MODULE_RWX is defined, but
CONFIG_STRICT_MODULE_RWX is disabled, we need stub for
module_enable_nx.

Move frob_text() outside of the CONFIG_STRICT_MODULE_RWX,
because it is needed anyway.

Fixes: 2eef1399a8 ("modules: fix BUG when load module with rodata=n")
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 09:11:07 +02:00
Yang Yingliang
0a199213f5 modules: fix BUG when load module with rodata=n
commit 2eef1399a8 upstream.

When loading a module with rodata=n, it causes an executing
NX-protected page BUG.

[   32.379191] kernel tried to execute NX-protected page - exploit attempt? (uid: 0)
[   32.382917] BUG: unable to handle page fault for address: ffffffffc0005000
[   32.385947] #PF: supervisor instruction fetch in kernel mode
[   32.387662] #PF: error_code(0x0011) - permissions violation
[   32.389352] PGD 240c067 P4D 240c067 PUD 240e067 PMD 421a52067 PTE 8000000421a53063
[   32.391396] Oops: 0011 [#1] SMP PTI
[   32.392478] CPU: 7 PID: 2697 Comm: insmod Tainted: G           O      5.2.0-rc5+ #202
[   32.394588] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014
[   32.398157] RIP: 0010:ko_test_init+0x0/0x1000 [ko_test]
[   32.399662] Code: Bad RIP value.
[   32.400621] RSP: 0018:ffffc900029f3ca8 EFLAGS: 00010246
[   32.402171] RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
[   32.404332] RDX: 00000000000004c7 RSI: 0000000000000cc0 RDI: ffffffffc0005000
[   32.406347] RBP: ffffffffc0005000 R08: ffff88842fbebc40 R09: ffffffff810ede4a
[   32.408392] R10: ffffea00108e3480 R11: 0000000000000000 R12: ffff88842bee21a0
[   32.410472] R13: 0000000000000001 R14: 0000000000000001 R15: ffffc900029f3e78
[   32.412609] FS:  00007fb4f0c0a700(0000) GS:ffff88842fbc0000(0000) knlGS:0000000000000000
[   32.414722] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[   32.416290] CR2: ffffffffc0004fd6 CR3: 0000000421a90004 CR4: 0000000000020ee0
[   32.418471] Call Trace:
[   32.419136]  do_one_initcall+0x41/0x1df
[   32.420199]  ? _cond_resched+0x10/0x40
[   32.421433]  ? kmem_cache_alloc_trace+0x36/0x160
[   32.422827]  do_init_module+0x56/0x1f7
[   32.423946]  load_module+0x1e67/0x2580
[   32.424947]  ? __alloc_pages_nodemask+0x150/0x2c0
[   32.426413]  ? map_vm_area+0x2d/0x40
[   32.427530]  ? __vmalloc_node_range+0x1ef/0x260
[   32.428850]  ? __do_sys_init_module+0x135/0x170
[   32.430060]  ? _cond_resched+0x10/0x40
[   32.431249]  __do_sys_init_module+0x135/0x170
[   32.432547]  do_syscall_64+0x43/0x120
[   32.433853]  entry_SYSCALL_64_after_hwframe+0x44/0xa9

Because if rodata=n, set_memory_x() can't be called, fix this by
calling set_memory_x in complete_formation();

Fixes: f2c65fb322 ("x86/modules: Avoid breaking W^X while loading modules")
Suggested-by: Jian Cheng <cj.chengjian@huawei.com>
Reviewed-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 09:11:07 +02:00
YueHaibing
2fd4aaaf61 kernel/module: Fix mem leak in module_add_modinfo_attrs
commit bc6f2a757d upstream.

In module_add_modinfo_attrs if sysfs_create_file
fails, we forget to free allocated modinfo_attrs
and roll back the sysfs files.

Fixes: 03e88ae1b1 ("[PATCH] fix module sysfs files reference counting")
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 09:11:01 +02:00
Yunfeng Ye
803c7bbc0d genirq: Prevent NULL pointer dereference in resend_irqs()
commit eddf3e9c7c upstream.

The following crash was observed:

  Unable to handle kernel NULL pointer dereference at 0000000000000158
  Internal error: Oops: 96000004 [#1] SMP
  pc : resend_irqs+0x68/0xb0
  lr : resend_irqs+0x64/0xb0
  ...
  Call trace:
   resend_irqs+0x68/0xb0
   tasklet_action_common.isra.6+0x84/0x138
   tasklet_action+0x2c/0x38
   __do_softirq+0x120/0x324
   run_ksoftirqd+0x44/0x60
   smpboot_thread_fn+0x1ac/0x1e8
   kthread+0x134/0x138
   ret_from_fork+0x10/0x18

The reason for this is that the interrupt resend mechanism happens in soft
interrupt context, which is a asynchronous mechanism versus other
operations on interrupts. free_irq() does not take resend handling into
account. Thus, the irq descriptor might be already freed before the resend
tasklet is executed. resend_irqs() does not check the return value of the
interrupt descriptor lookup and derefences the return value
unconditionally.

  1):
  __setup_irq
    irq_startup
      check_irq_resend  // activate softirq to handle resend irq
  2):
  irq_domain_free_irqs
    irq_free_descs
      free_desc
        call_rcu(&desc->rcu, delayed_free_desc)
  3):
  __do_softirq
    tasklet_action
      resend_irqs
        desc = irq_to_desc(irq)
        desc->handle_irq(desc)  // desc is NULL --> Ooops

Fix this by adding a NULL pointer check in resend_irqs() before derefencing
the irq descriptor.

Fixes: a4633adcdb ("[PATCH] genirq: add genirq sw IRQ-retrigger")
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Zhiqiang Liu <liuzhiqiang26@huawei.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1630ae13-5c8e-901e-de09-e740b6a426a7@huawei.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 09:10:58 +02:00
Roman Gushchin
c554749c3f cgroup: freezer: fix frozen state inheritance
commit 97a6136983 upstream.

If a new child cgroup is created in the frozen cgroup hierarchy
(one or more of ancestor cgroups is frozen), the CGRP_FREEZE cgroup
flag should be set. Otherwise if a process will be attached to the
child cgroup, it won't become frozen.

The problem can be reproduced with the test_cgfreezer_mkdir test.

This is the output before this patch:
  ~/test_freezer
  ok 1 test_cgfreezer_simple
  ok 2 test_cgfreezer_tree
  ok 3 test_cgfreezer_forkbomb
  Cgroup /sys/fs/cgroup/cg_test_mkdir_A/cg_test_mkdir_B isn't frozen
  not ok 4 test_cgfreezer_mkdir
  ok 5 test_cgfreezer_rmdir
  ok 6 test_cgfreezer_migrate
  ok 7 test_cgfreezer_ptrace
  ok 8 test_cgfreezer_stopped
  ok 9 test_cgfreezer_ptraced
  ok 10 test_cgfreezer_vfork

And with this patch:
  ~/test_freezer
  ok 1 test_cgfreezer_simple
  ok 2 test_cgfreezer_tree
  ok 3 test_cgfreezer_forkbomb
  ok 4 test_cgfreezer_mkdir
  ok 5 test_cgfreezer_rmdir
  ok 6 test_cgfreezer_migrate
  ok 7 test_cgfreezer_ptrace
  ok 8 test_cgfreezer_stopped
  ok 9 test_cgfreezer_ptraced
  ok 10 test_cgfreezer_vfork

Reported-by: Mark Crossen <mcrossen@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Fixes: 76f969e894 ("cgroup: cgroup v2 freezer")
Cc: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org # v5.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-19 09:10:54 +02:00
Liangyan
1f570399e4 sched/fair: Don't assign runtime for throttled cfs_rq
commit 5e2d2cc258 upstream.

do_sched_cfs_period_timer() will refill cfs_b runtime and call
distribute_cfs_runtime to unthrottle cfs_rq, sometimes cfs_b->runtime
will allocate all quota to one cfs_rq incorrectly, then other cfs_rqs
attached to this cfs_b can't get runtime and will be throttled.

We find that one throttled cfs_rq has non-negative
cfs_rq->runtime_remaining and cause an unexpetced cast from s64 to u64
in snippet:

  distribute_cfs_runtime() {
    runtime = -cfs_rq->runtime_remaining + 1;
  }

The runtime here will change to a large number and consume all
cfs_b->runtime in this cfs_b period.

According to Ben Segall, the throttled cfs_rq can have
account_cfs_rq_runtime called on it because it is throttled before
idle_balance, and the idle_balance calls update_rq_clock to add time
that is accounted to the task.

This commit prevents cfs_rq to be assgined new runtime if it has been
throttled until that distribute_cfs_runtime is called.

Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Ben Segall <bsegall@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: shanpeic@linux.alibaba.com
Cc: stable@vger.kernel.org
Cc: xlpang@linux.alibaba.com
Fixes: d3d9dc3302 ("sched: Throttle entities exceeding their allowed bandwidth")
Link: https://lkml.kernel.org/r/20190826121633.6538-1-liangyan.peng@linux.alibaba.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-16 08:23:18 +02:00
Andrea Righi
d58500c6fc kprobes: Fix potential deadlock in kprobe_optimizer()
[ Upstream commit f1c6ece237 ]

lockdep reports the following deadlock scenario:

 WARNING: possible circular locking dependency detected

 kworker/1:1/48 is trying to acquire lock:
 000000008d7a62b2 (text_mutex){+.+.}, at: kprobe_optimizer+0x163/0x290

 but task is already holding lock:
 00000000850b5e2d (module_mutex){+.+.}, at: kprobe_optimizer+0x31/0x290

 which lock already depends on the new lock.

 the existing dependency chain (in reverse order) is:

 -> #1 (module_mutex){+.+.}:
        __mutex_lock+0xac/0x9f0
        mutex_lock_nested+0x1b/0x20
        set_all_modules_text_rw+0x22/0x90
        ftrace_arch_code_modify_prepare+0x1c/0x20
        ftrace_run_update_code+0xe/0x30
        ftrace_startup_enable+0x2e/0x50
        ftrace_startup+0xa7/0x100
        register_ftrace_function+0x27/0x70
        arm_kprobe+0xb3/0x130
        enable_kprobe+0x83/0xa0
        enable_trace_kprobe.part.0+0x2e/0x80
        kprobe_register+0x6f/0xc0
        perf_trace_event_init+0x16b/0x270
        perf_kprobe_init+0xa7/0xe0
        perf_kprobe_event_init+0x3e/0x70
        perf_try_init_event+0x4a/0x140
        perf_event_alloc+0x93a/0xde0
        __do_sys_perf_event_open+0x19f/0xf30
        __x64_sys_perf_event_open+0x20/0x30
        do_syscall_64+0x65/0x1d0
        entry_SYSCALL_64_after_hwframe+0x49/0xbe

 -> #0 (text_mutex){+.+.}:
        __lock_acquire+0xfcb/0x1b60
        lock_acquire+0xca/0x1d0
        __mutex_lock+0xac/0x9f0
        mutex_lock_nested+0x1b/0x20
        kprobe_optimizer+0x163/0x290
        process_one_work+0x22b/0x560
        worker_thread+0x50/0x3c0
        kthread+0x112/0x150
        ret_from_fork+0x3a/0x50

 other info that might help us debug this:

  Possible unsafe locking scenario:

        CPU0                    CPU1
        ----                    ----
   lock(module_mutex);
                                lock(text_mutex);
                                lock(module_mutex);
   lock(text_mutex);

  *** DEADLOCK ***

As a reproducer I've been using bcc's funccount.py
(https://github.com/iovisor/bcc/blob/master/tools/funccount.py),
for example:

 # ./funccount.py '*interrupt*'

That immediately triggers the lockdep splat.

Fix by acquiring text_mutex before module_mutex in kprobe_optimizer().

Signed-off-by: Andrea Righi <andrea.righi@canonical.com>
Acked-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: d5b844a2cf ("ftrace/x86: Remove possible deadlock between register_kprobe() and ftrace_run_update_code()")
Link: http://lkml.kernel.org/r/20190812184302.GA7010@xps-13
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-10 10:35:19 +01:00
Sebastian Andrzej Siewior
9ad89d579c sched/core: Schedule new worker even if PI-blocked
[ Upstream commit b0fdc01354 ]

If a task is PI-blocked (blocking on sleeping spinlock) then we don't want to
schedule a new kworker if we schedule out due to lock contention because !RT
does not do that as well. A spinning spinlock disables preemption and a worker
does not schedule out on lock contention (but spin).

On RT the RW-semaphore implementation uses an rtmutex so
tsk_is_pi_blocked() will return true if a task blocks on it. In this case we
will now start a new worker which may deadlock if one worker is waiting on
progress from another worker. Since a RW-semaphore starts a new worker on !RT,
we should do the same on RT.

XFS is able to trigger this deadlock.

Allow to schedule new worker if the current worker is PI-blocked.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20190816160626.12742-1-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-10 10:35:19 +01:00
Daniel Borkmann
a282179be7 bpf: fix use after free in prog symbol exposure
commit c751798aa2 upstream.

syzkaller managed to trigger the warning in bpf_jit_free() which checks via
bpf_prog_kallsyms_verify_off() for potentially unlinked JITed BPF progs
in kallsyms, and subsequently trips over GPF when walking kallsyms entries:

  [...]
  8021q: adding VLAN 0 to HW filter on device batadv0
  8021q: adding VLAN 0 to HW filter on device batadv0
  WARNING: CPU: 0 PID: 9869 at kernel/bpf/core.c:810 bpf_jit_free+0x1e8/0x2a0
  Kernel panic - not syncing: panic_on_warn set ...
  CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Workqueue: events bpf_prog_free_deferred
  Call Trace:
   __dump_stack lib/dump_stack.c:77 [inline]
   dump_stack+0x113/0x167 lib/dump_stack.c:113
   panic+0x212/0x40b kernel/panic.c:214
   __warn.cold.8+0x1b/0x38 kernel/panic.c:571
   report_bug+0x1a4/0x200 lib/bug.c:186
   fixup_bug arch/x86/kernel/traps.c:178 [inline]
   do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:271
   do_invalid_op+0x36/0x40 arch/x86/kernel/traps.c:290
   invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:973
  RIP: 0010:bpf_jit_free+0x1e8/0x2a0
  Code: 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 86 00 00 00 48 ba 00 02 00 00 00 00 ad de 0f b6 43 02 49 39 d6 0f 84 5f fe ff ff <0f> 0b e9 58 fe ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 e2 48 c1
  RSP: 0018:ffff888092f67cd8 EFLAGS: 00010202
  RAX: 0000000000000007 RBX: ffffc90001947000 RCX: ffffffff816e9d88
  RDX: dead000000000200 RSI: 0000000000000008 RDI: ffff88808769f7f0
  RBP: ffff888092f67d00 R08: fffffbfff1394059 R09: fffffbfff1394058
  R10: fffffbfff1394058 R11: ffffffff89ca02c7 R12: ffffc90001947002
  R13: ffffc90001947020 R14: ffffffff881eca80 R15: ffff88808769f7e8
  BUG: unable to handle kernel paging request at fffffbfff400d000
  #PF error: [normal kernel read fault]
  PGD 21ffee067 P4D 21ffee067 PUD 21ffed067 PMD 9f942067 PTE 0
  Oops: 0000 [#1] PREEMPT SMP KASAN
  CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1
  Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
  Workqueue: events bpf_prog_free_deferred
  RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:495 [inline]
  RIP: 0010:bpf_tree_comp kernel/bpf/core.c:558 [inline]
  RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline]
  RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline]
  RIP: 0010:bpf_prog_kallsyms_find+0x107/0x2e0 kernel/bpf/core.c:632
  Code: 00 f0 ff ff 44 38 c8 7f 08 84 c0 0f 85 fa 00 00 00 41 f6 45 02 01 75 02 0f 0b 48 39 da 0f 82 92 00 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 30 84 c0 74 08 3c 03 0f 8e 45 01 00 00 8b 03 48 c1 e0
  [...]

Upon further debugging, it turns out that whenever we trigger this
issue, the kallsyms removal in bpf_prog_ksym_node_del() was /skipped/
but yet bpf_jit_free() reported that the entry is /in use/.

Problem is that symbol exposure via bpf_prog_kallsyms_add() but also
perf_event_bpf_event() were done /after/ bpf_prog_new_fd(). Once the
fd is exposed to the public, a parallel close request came in right
before we attempted to do the bpf_prog_kallsyms_add().

Given at this time the prog reference count is one, we start to rip
everything underneath us via bpf_prog_release() -> bpf_prog_put().
The memory is eventually released via deferred free, so we're seeing
that bpf_jit_free() has a kallsym entry because we added it from
bpf_prog_load() but /after/ bpf_prog_put() from the remote CPU.

Therefore, move both notifications /before/ we install the fd. The
issue was never seen between bpf_prog_alloc_id() and bpf_prog_new_fd()
because upon bpf_prog_get_fd_by_id() we'll take another reference to
the BPF prog, so we're still holding the original reference from the
bpf_prog_load().

Fixes: 6ee52e2a3f ("perf, bpf: Introduce PERF_RECORD_BPF_EVENT")
Fixes: 74451e66d5 ("bpf: make jited programs visible in traces")
Reported-by: syzbot+bd3bba6ff3fcea7a6ec6@syzkaller.appspotmail.com
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Song Liu <songliubraving@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-06 10:23:51 +02:00
Steven Rostedt (VMware)
e56b7b3b92 ftrace: Check for empty hash and comment the race with registering probes
commit 372e0d01da upstream.

The race between adding a function probe and reading the probes that exist
is very subtle. It needs a comment. Also, the issue can also happen if the
probe has has the EMPTY_HASH as its func_hash.

Cc: stable@vger.kernel.org
Fixes: 7b60f3d876 ("ftrace: Dynamically create the probe ftrace_ops for the trace_array")
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-06 10:23:39 +02:00
Naveen N. Rao
d784aa1a0f ftrace: Check for successful allocation of hash
commit 5b0022dd32 upstream.

In register_ftrace_function_probe(), we are not checking the return
value of alloc_and_copy_ftrace_hash(). The subsequent call to
ftrace_match_records() may end up dereferencing the same. Add a check to
ensure this doesn't happen.

Link: http://lkml.kernel.org/r/26e92574f25ad23e7cafa3cf5f7a819de1832cbe.1562249521.git.naveen.n.rao@linux.vnet.ibm.com

Cc: stable@vger.kernel.org
Fixes: 1ec3a81a0c ("ftrace: Have each function probe use its own ftrace_ops")
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-06 10:23:38 +02:00
Naveen N. Rao
cd419e7c03 ftrace: Fix NULL pointer dereference in t_probe_next()
commit 7bd46644ea upstream.

LTP testsuite on powerpc results in the below crash:

  Unable to handle kernel paging request for data at address 0x00000000
  Faulting instruction address: 0xc00000000029d800
  Oops: Kernel access of bad area, sig: 11 [#1]
  LE SMP NR_CPUS=2048 NUMA PowerNV
  ...
  CPU: 68 PID: 96584 Comm: cat Kdump: loaded Tainted: G        W
  NIP:  c00000000029d800 LR: c00000000029dac4 CTR: c0000000001e6ad0
  REGS: c0002017fae8ba10 TRAP: 0300   Tainted: G        W
  MSR:  9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE>  CR: 28022422  XER: 20040000
  CFAR: c00000000029d90c DAR: 0000000000000000 DSISR: 40000000 IRQMASK: 0
  ...
  NIP [c00000000029d800] t_probe_next+0x60/0x180
  LR [c00000000029dac4] t_mod_start+0x1a4/0x1f0
  Call Trace:
  [c0002017fae8bc90] [c000000000cdbc40] _cond_resched+0x10/0xb0 (unreliable)
  [c0002017fae8bce0] [c0000000002a15b0] t_start+0xf0/0x1c0
  [c0002017fae8bd30] [c0000000004ec2b4] seq_read+0x184/0x640
  [c0002017fae8bdd0] [c0000000004a57bc] sys_read+0x10c/0x300
  [c0002017fae8be30] [c00000000000b388] system_call+0x5c/0x70

The test (ftrace_set_ftrace_filter.sh) is part of ftrace stress tests
and the crash happens when the test does 'cat
$TRACING_PATH/set_ftrace_filter'.

The address points to the second line below, in t_probe_next(), where
filter_hash is dereferenced:
  hash = iter->probe->ops.func_hash->filter_hash;
  size = 1 << hash->size_bits;

This happens due to a race with register_ftrace_function_probe(). A new
ftrace_func_probe is created and added into the func_probes list in
trace_array under ftrace_lock. However, before initializing the filter,
we drop ftrace_lock, and re-acquire it after acquiring regex_lock. If
another process is trying to read set_ftrace_filter, it will be able to
acquire ftrace_lock during this window and it will end up seeing a NULL
filter_hash.

Fix this by just checking for a NULL filter_hash in t_probe_next(). If
the filter_hash is NULL, then this probe is just being added and we can
simply return from here.

Link: http://lkml.kernel.org/r/05e021f757625cbbb006fad41380323dbe4e3b43.1562249521.git.naveen.n.rao@linux.vnet.ibm.com

Cc: stable@vger.kernel.org
Fixes: 7b60f3d876 ("ftrace: Dynamically create the probe ftrace_ops for the trace_array")
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-06 10:23:38 +02:00
Peter Zijlstra
eeb6b4a096 lcoking/rwsem: Add missing ACQUIRE to read_slowpath sleep loop
[ Upstream commit 99143f82a2 ]

While reviewing another read_slowpath patch, both Will and I noticed
another missing ACQUIRE, namely:

  X = 0;

  CPU0			CPU1

  rwsem_down_read()
    for (;;) {
      set_current_state(TASK_UNINTERRUPTIBLE);

                        X = 1;
                        rwsem_up_write();
                          rwsem_mark_wake()
                            atomic_long_add(adjustment, &sem->count);
                            smp_store_release(&waiter->task, NULL);

      if (!waiter.task)
        break;

      ...
    }

  r = X;

Allows 'r == 0'.

Reported-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Fixes: 1da177e4c3 ("Linux-2.6.12-rc2")
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-06 10:23:28 +02:00
Jan Stancek
931424d078 locking/rwsem: Add missing ACQUIRE to read_slowpath exit when queue is empty
[ Upstream commit e1b98fa316 ]

LTP mtest06 has been observed to occasionally hit "still mapped when
deleted" and following BUG_ON on arm64.

The extra mapcount originated from pagefault handler, which handled
pagefault for vma that has already been detached. vma is detached
under mmap_sem write lock by detach_vmas_to_be_unmapped(), which
also invalidates vmacache.

When the pagefault handler (under mmap_sem read lock) calls
find_vma(), vmacache_valid() wrongly reports vmacache as valid.

After rwsem down_read() returns via 'queue empty' path (as of v5.2),
it does so without an ACQUIRE on sem->count:

  down_read()
    __down_read()
      rwsem_down_read_failed()
        __rwsem_down_read_failed_common()
          raw_spin_lock_irq(&sem->wait_lock);
          if (list_empty(&sem->wait_list)) {
            if (atomic_long_read(&sem->count) >= 0) {
              raw_spin_unlock_irq(&sem->wait_lock);
              return sem;

The problem can be reproduced by running LTP mtest06 in a loop and
building the kernel (-j $NCPUS) in parallel. It does reproduces since
v4.20 on arm64 HPE Apollo 70 (224 CPUs, 256GB RAM, 2 nodes). It
triggers reliably in about an hour.

The patched kernel ran fine for 10+ hours.

Signed-off-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Will Deacon <will@kernel.org>
Acked-by: Waiman Long <longman@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dbueso@suse.de
Fixes: 4b486b535c ("locking/rwsem: Exit read lock slowpath if queue empty & no writer")
Link: https://lkml.kernel.org/r/50b8914e20d1d62bb2dee42d342836c2c16ebee7.1563438048.git.jstancek@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-06 10:23:27 +02:00
Lucas Stach
4ab6b15a00 dma-direct: don't truncate dma_required_mask to bus addressing capabilities
[ Upstream commit d8ad55538a ]

The dma required_mask needs to reflect the actual addressing capabilities
needed to handle the whole system RAM. When truncated down to the bus
addressing capabilities dma_addressing_limited() will incorrectly signal
no limitations for devices which are restricted by the bus_dma_mask.

Fixes: b4ebe60632 (dma-direct: implement complete bus_dma_mask handling)
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Tested-by: Atish Patra <atish.patra@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-06 10:23:18 +02:00
Michael Kelley
641c1d8396 genirq: Properly pair kobject_del() with kobject_add()
commit d0ff14fdc9 upstream.

If alloc_descs() fails before irq_sysfs_init() has run, free_desc() in the
cleanup path will call kobject_del() even though the kobject has not been
added with kobject_add().

Fix this by making the call to kobject_del() conditional on whether
irq_sysfs_init() has run.

This problem surfaced because commit aa30f47cf6 ("kobject: Add support
for default attribute groups to kobj_type") makes kobject_del() stricter
about pairing with kobject_add(). If the pairing is incorrrect, a WARNING
and backtrace occur in sysfs_remove_group() because there is no parent.

[ tglx: Add a comment to the code and make it work with CONFIG_SYSFS=n ]

Fixes: ecb3f394c5 ("genirq: Expose interrupt information through sysfs")
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/1564703564-4116-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-29 08:30:25 +02:00
Jason Xing
1e25282735 psi: get poll_work to run when calling poll syscall next time
commit 7b2b55da1d upstream.

Only when calling the poll syscall the first time can user receive
POLLPRI correctly.  After that, user always fails to acquire the event
signal.

Reproduce case:
 1. Get the monitor code in Documentation/accounting/psi.txt
 2. Run it, and wait for the event triggered.
 3. Kill and restart the process.

The question is why we can end up with poll_scheduled = 1 but the work
not running (which would reset it to 0).  And the answer is because the
scheduling side sees group->poll_kworker under RCU protection and then
schedules it, but here we cancel the work and destroy the worker.  The
cancel needs to pair with resetting the poll_scheduled flag.

Link: http://lkml.kernel.org/r/1566357985-97781-1-git-send-email-joseph.qi@linux.alibaba.com
Signed-off-by: Jason Xing <kerneljasonxing@linux.alibaba.com>
Signed-off-by: Joseph Qi <joseph.qi@linux.alibaba.com>
Reviewed-by: Caspar Zhang <caspar@linux.alibaba.com>
Reviewed-by: Suren Baghdasaryan <surenb@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-29 08:30:24 +02:00
Suren Baghdasaryan
1f54a9b849 sched/psi: Do not require setsched permission from the trigger creator
[ Upstream commit 04e048cf09 ]

When a process creates a new trigger by writing into /proc/pressure/*
files, permissions to write such a file should be used to determine whether
the process is allowed to do so or not. Current implementation would also
require such a process to have setsched capability. Setting of psi trigger
thread's scheduling policy is an implementation detail and should not be
exposed to the user level. Remove the permission check by using _nocheck
version of the function.

Suggested-by: Nick Kralevich <nnk@google.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: lizefan@huawei.com
Cc: mingo@redhat.com
Cc: akpm@linux-foundation.org
Cc: kernel-team@android.com
Cc: dennisszhou@gmail.com
Cc: dennis@kernel.org
Cc: hannes@cmpxchg.org
Cc: axboe@kernel.dk
Link: https://lkml.kernel.org/r/20190730013310.162367-1-surenb@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-29 08:30:15 +02:00
Peter Zijlstra
9ea2355c31 sched/psi: Reduce psimon FIFO priority
[ Upstream commit 14f5c7b46a ]

PSI defaults to a FIFO-99 thread, reduce this to FIFO-1.

FIFO-99 is the very highest priority available to SCHED_FIFO and
it not a suitable default; it would indicate the psi work is the
most important work on the machine.

Since Real-Time tasks will have pre-allocated memory and locked it in
place, Real-Time tasks do not care about PSI. All it needs is to be
above OTHER.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Suren Baghdasaryan <surenb@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-29 08:30:15 +02:00
Dietmar Eggemann
a343eca8fd sched/deadline: Fix double accounting of rq/running bw in push & pull
[ Upstream commit f4904815f9 ]

{push,pull}_dl_task() always calls {de,}activate_task() with .flags=0
which sets p->on_rq=TASK_ON_RQ_MIGRATING.

{push,pull}_dl_task()->{de,}activate_task()->{de,en}queue_task()->
{de,en}queue_task_dl() calls {sub,add}_{running,rq}_bw() since
p->on_rq==TASK_ON_RQ_MIGRATING.
So {sub,add}_{running,rq}_bw() in {push,pull}_dl_task() is
double-accounting for that task.

Fix it by removing rq/running bw accounting in [push/pull]_dl_task().

Fixes: 7dd7788411 ("sched/core: Unify p->on_rq updates")
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Valentin Schneider <valentin.schneider@arm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Luca Abeni <luca.abeni@santannapisa.it>
Cc: Daniel Bristot de Oliveira <bristot@redhat.com>
Cc: Juri Lelli <juri.lelli@redhat.com>
Cc: Qais Yousef <qais.yousef@arm.com>
Link: https://lkml.kernel.org/r/20190802145945.18702-2-dietmar.eggemann@arm.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-29 08:30:14 +02:00
Christoph Hellwig
3d0ed0e4fa dma-mapping: check pfn validity in dma_common_{mmap,get_sgtable}
[ Upstream commit 66d7780f18 ]

Check that the pfn returned from arch_dma_coherent_to_pfn refers to
a valid page and reject the mmap / get_sgtable requests otherwise.

Based on the arm implementation of the mmap and get_sgtable methods.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Tested-by: Vignesh Raghavendra <vigneshr@ti.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-25 10:10:25 -04:00
Viresh Kumar
4b837b7923 cpufreq: schedutil: Don't skip freq update when limits change
commit 600f5badb7 upstream.

To avoid reducing the frequency of a CPU prematurely, we skip reducing
the frequency if the CPU had been busy recently.

This should not be done when the limits of the policy are changed, for
example due to thermal throttling. We should always get the frequency
within the new limits as soon as possible.

Trying to fix this by using only one flag, i.e. need_freq_update, can
lead to a race condition where the flag gets cleared without forcing us
to change the frequency at least once. And so this patch introduces
another flag to avoid that race condition.

Fixes: ecd2884291 ("cpufreq: schedutil: Don't set next_freq to UINT_MAX")
Cc: v4.18+ <stable@vger.kernel.org> # v4.18+
Reported-by: Doug Smythies <dsmythies@telus.net>
Tested-by: Doug Smythies <dsmythies@telus.net>
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-25 10:10:21 -04:00
Leonard Crestez
5ca37bfa8c perf/core: Fix creating kernel counters for PMUs that override event->cpu
[ Upstream commit 4ce54af8b3 ]

Some hardware PMU drivers will override perf_event.cpu inside their
event_init callback. This causes a lockdep splat when initialized through
the kernel API:

 WARNING: CPU: 0 PID: 250 at kernel/events/core.c:2917 ctx_sched_out+0x78/0x208
 pc : ctx_sched_out+0x78/0x208
 Call trace:
  ctx_sched_out+0x78/0x208
  __perf_install_in_context+0x160/0x248
  remote_function+0x58/0x68
  generic_exec_single+0x100/0x180
  smp_call_function_single+0x174/0x1b8
  perf_install_in_context+0x178/0x188
  perf_event_create_kernel_counter+0x118/0x160

Fix this by calling perf_install_in_context with event->cpu, just like
perf_event_open

Signed-off-by: Leonard Crestez <leonard.crestez@nxp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Frank Li <Frank.li@nxp.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Link: https://lkml.kernel.org/r/c4ebe0503623066896d7046def4d6b1e06e0eb2e.1563972056.git.leonard.crestez@nxp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-16 10:11:07 +02:00
Ming Lei
bb3db40acb genirq/affinity: Create affinity mask for single vector
commit 491beed3b1 upstream.

Since commit c66d4bd110 ("genirq/affinity: Add new callback for
(re)calculating interrupt sets"), irq_create_affinity_masks() returns
NULL in case of single vector. This change has caused regression on some
drivers, such as lpfc.

The problem is that single vector requests can happen in some generic cases:

  1) kdump kernel

  2) irq vectors resource is close to exhaustion.

If in that situation the affinity mask for a single vector is not created,
every caller has to handle the special case.

There is no reason why the mask cannot be created, so remove the check for
a single vector and create the mask.

Fixes: c66d4bd110 ("genirq/affinity: Add new callback for (re)calculating interrupt sets")
Signed-off-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20190805011906.5020-1-ming.lei@redhat.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-16 10:10:56 +02:00
Changbin Du
e4287f51fc fgraph: Remove redundant ftrace_graph_notrace_addr() test
commit 6c77221df9 upstream.

We already have tested it before. The second one should be removed.
With this change, the performance should have little improvement.

Link: http://lkml.kernel.org/r/20190730140850.7927-1-changbin.du@gmail.com

Cc: stable@vger.kernel.org
Fixes: 9cd2992f2d ("fgraph: Have set_graph_notrace only affect function_graph tracer")
Signed-off-by: Changbin Du <changbin.du@gmail.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-06 19:08:15 +02:00
Josh Poimboeuf
33260ae248 bpf: Disable GCC -fgcse optimization for ___bpf_prog_run()
[ Upstream commit 3193c0836f ]

On x86-64, with CONFIG_RETPOLINE=n, GCC's "global common subexpression
elimination" optimization results in ___bpf_prog_run()'s jumptable code
changing from this:

	select_insn:
		jmp *jumptable(, %rax, 8)
		...
	ALU64_ADD_X:
		...
		jmp *jumptable(, %rax, 8)
	ALU_ADD_X:
		...
		jmp *jumptable(, %rax, 8)

to this:

	select_insn:
		mov jumptable, %r12
		jmp *(%r12, %rax, 8)
		...
	ALU64_ADD_X:
		...
		jmp *(%r12, %rax, 8)
	ALU_ADD_X:
		...
		jmp *(%r12, %rax, 8)

The jumptable address is placed in a register once, at the beginning of
the function.  The function execution can then go through multiple
indirect jumps which rely on that same register value.  This has a few
issues:

1) Objtool isn't smart enough to be able to track such a register value
   across multiple recursive indirect jumps through the jump table.

2) With CONFIG_RETPOLINE enabled, this optimization actually results in
   a small slowdown.  I measured a ~4.7% slowdown in the test_bpf
   "tcpdump port 22" selftest.

   This slowdown is actually predicted by the GCC manual:

     Note: When compiling a program using computed gotos, a GCC
     extension, you may get better run-time performance if you
     disable the global common subexpression elimination pass by
     adding -fno-gcse to the command line.

So just disable the optimization for this function.

Fixes: e55a73251d ("bpf: Fix ORC unwinding in non-JIT BPF code")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/30c3ca29ba037afcbd860a8672eef0021addf9fe.1563413318.git.jpoimboe@redhat.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-06 19:08:14 +02:00
Peter Zijlstra
1b3ecd64aa stacktrace: Force USER_DS for stack_trace_save_user()
[ Upstream commit cac9b9a4b0 ]

When walking userspace stacks, USER_DS needs to be set, otherwise
access_ok() will not function as expected.

Reported-by: Vegard Nossum <vegard.nossum@oracle.com>
Reported-by: Eiichi Tsukata <devel@etsukata.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vegard Nossum <vegard.nossum@oracle.com>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Link: https://lkml.kernel.org/r/20190718085754.GM3402@hirez.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-06 19:08:13 +02:00
Andrii Nakryiko
a381e158c7 bpf: fix BTF verifier size resolution logic
[ Upstream commit 1acc5d5c58 ]

BTF verifier has a size resolution bug which in some circumstances leads to
invalid size resolution for, e.g., TYPEDEF modifier.  This happens if we have
[1] PTR -> [2] TYPEDEF -> [3] ARRAY, in which case due to being in pointer
context ARRAY size won't be resolved (because for pointer it doesn't matter, so
it's a sink in pointer context), but it will be permanently remembered as zero
for TYPEDEF and TYPEDEF will be marked as RESOLVED. Eventually ARRAY size will
be resolved correctly, but TYPEDEF resolved_size won't be updated anymore.
This, subsequently, will lead to erroneous map creation failure, if that
TYPEDEF is specified as either key or value, as key_size/value_size won't
correspond to resolved size of TYPEDEF (kernel will believe it's zero).

Note, that if BTF was ordered as [1] ARRAY <- [2] TYPEDEF <- [3] PTR, this
won't be a problem, as by the time we get to TYPEDEF, ARRAY's size is already
calculated and stored.

This bug manifests itself in rejecting BTF-defined maps that use array
typedef as a value type:

typedef int array_t[16];

struct {
    __uint(type, BPF_MAP_TYPE_ARRAY);
    __type(value, array_t); /* i.e., array_t *value; */
} test_map SEC(".maps");

The fix consists on not relying on modifier's resolved_size and instead using
modifier's resolved_id (type ID for "concrete" type to which modifier
eventually resolves) and doing size determination for that resolved type. This
allow to preserve existing "early DFS termination" logic for PTR or
STRUCT_OR_ARRAY contexts, but still do correct size determination for modifier
types.

Fixes: eb3f595dab ("bpf: btf: Validate type reference")
Cc: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-06 19:08:10 +02:00
Arnd Bergmann
aaf15ffc6b swiotlb: fix phys_addr_t overflow warning
[ Upstream commit 9c106119f6 ]

On architectures that have a larger dma_addr_t than phys_addr_t,
the swiotlb_tbl_map_single() function truncates its return code
in the failure path, making it impossible to identify the error
later, as we compare to the original value:

kernel/dma/swiotlb.c:551:9: error: implicit conversion from 'dma_addr_t' (aka 'unsigned long long') to 'phys_addr_t' (aka 'unsigned int') changes value from 18446744073709551615 to 4294967295 [-Werror,-Wconstant-conversion]
        return DMA_MAPPING_ERROR;

Use an explicit typecast here to convert it to the narrower type,
and use the same expression in the error handling later.

Fixes: b907e20508 ("swiotlb: remove SWIOTLB_MAP_ERROR")
Acked-by: Stefano Stabellini <sstabellini@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-06 19:08:05 +02:00
Prarit Bhargava
768cb58039 kernel/module.c: Only return -EEXIST for modules that have finished loading
[ Upstream commit 6e6de3dee5 ]

Microsoft HyperV disables the X86_FEATURE_SMCA bit on AMD systems, and
linux guests boot with repeated errors:

amd64_edac_mod: Unknown symbol amd_unregister_ecc_decoder (err -2)
amd64_edac_mod: Unknown symbol amd_register_ecc_decoder (err -2)
amd64_edac_mod: Unknown symbol amd_report_gart_errors (err -2)
amd64_edac_mod: Unknown symbol amd_unregister_ecc_decoder (err -2)
amd64_edac_mod: Unknown symbol amd_register_ecc_decoder (err -2)
amd64_edac_mod: Unknown symbol amd_report_gart_errors (err -2)

The warnings occur because the module code erroneously returns -EEXIST
for modules that have failed to load and are in the process of being
removed from the module list.

module amd64_edac_mod has a dependency on module edac_mce_amd.  Using
modules.dep, systemd will load edac_mce_amd for every request of
amd64_edac_mod.  When the edac_mce_amd module loads, the module has
state MODULE_STATE_UNFORMED and once the module load fails and the state
becomes MODULE_STATE_GOING.  Another request for edac_mce_amd module
executes and add_unformed_module() will erroneously return -EEXIST even
though the previous instance of edac_mce_amd has MODULE_STATE_GOING.
Upon receiving -EEXIST, systemd attempts to load amd64_edac_mod, which
fails because of unknown symbols from edac_mce_amd.

add_unformed_module() must wait to return for any case other than
MODULE_STATE_LIVE to prevent a race between multiple loads of
dependent modules.

Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Signed-off-by: Barret Rhoden <brho@google.com>
Cc: David Arcari <darcari@redhat.com>
Cc: Jessica Yu <jeyu@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-06 19:08:04 +02:00