Commit Graph

433 Commits

Author SHA1 Message Date
Linus Torvalds
9ea925c806 Merge tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "Core:

   - Overhaul of posix-timers in preparation of removing the workaround
     for periodic timers which have signal delivery ignored.

   - Remove the historical extra jiffie in msleep()

     msleep() adds an extra jiffie to the timeout value to ensure
     minimal sleep time. The timer wheel ensures minimal sleep time
     since the large rewrite to a non-cascading wheel, but the extra
     jiffie in msleep() remained unnoticed. Remove it.

   - Make the timer slack handling correct for realtime tasks.

     The procfs interface is inconsistent and does neither reflect
     reality nor conforms to the man page. Show the correct 0 slack for
     real time tasks and enforce it at the core level instead of having
     inconsistent individual checks in various timer setup functions.

   - The usual set of updates and enhancements all over the place.

  Drivers:

   - Allow the ACPI PM timer to be turned off during suspend

   - No new drivers

   - The usual updates and enhancements in various drivers"

* tag 'timers-core-2024-09-16' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  ntp: Make sure RTC is synchronized when time goes backwards
  treewide: Fix wrong singular form of jiffies in comments
  cpu: Use already existing usleep_range()
  timers: Rename next_expiry_recalc() to be unique
  platform/x86:intel/pmc: Fix comment for the pmc_core_acpi_pm_timer_suspend_resume function
  clocksource/drivers/jcore: Use request_percpu_irq()
  clocksource/drivers/cadence-ttc: Add missing clk_disable_unprepare in ttc_setup_clockevent
  clocksource/drivers/asm9260: Add missing clk_disable_unprepare in asm9260_timer_init
  clocksource/drivers/qcom: Add missing iounmap() on errors in msm_dt_timer_init()
  clocksource/drivers/ingenic: Use devm_clk_get_enabled() helpers
  platform/x86:intel/pmc: Enable the ACPI PM Timer to be turned off when suspended
  clocksource: acpi_pm: Add external callback for suspend/resume
  clocksource/drivers/arm_arch_timer: Using for_each_available_child_of_node_scoped()
  dt-bindings: timer: rockchip: Add rk3576 compatible
  timers: Annotate possible non critical data race of next_expiry
  timers: Remove historical extra jiffie for timeout in msleep()
  hrtimer: Use and report correct timerslack values for realtime tasks
  hrtimer: Annotate hrtimer_cpu_base_.*_expiry() for sparse.
  timers: Add sparse annotation for timer_sync_wait_running().
  signal: Replace BUG_ON()s
  ...
2024-09-17 07:25:37 +02:00
Thomas Gleixner
2f7eedca6c Merge branch 'linus' into timers/core
To update with the latest fixes.
2024-09-10 13:49:53 +02:00
Anna-Maria Behnsen
662a1bfb90 cpu: Use already existing usleep_range()
usleep_range() is a wrapper arount usleep_range_state() which hands in
TASK_UNTINTERRUPTIBLE as state argument.

Use already exising wrapper usleep_range(). No functional change.

Signed-off-by: Anna-Maria Behnsen <anna-maria@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/all/20240904-devel-anna-maria-b4-timers-flseep-v1-2-e98760256370@linutronix.de
2024-09-08 20:47:40 +02:00
Thorsten Blum
8db70faeab cpu: Fix W=1 build kernel-doc warning
Building the kernel with W=1 generates the following warning:

  kernel/cpu.c:2693: warning: This comment starts with '/**',
  		     but isn't a kernel-doc comment.

The function topology_is_core_online() is a simple helper function and
doesn't need a kernel-doc comment.

Use a normal comment instead.

Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240825221152.71951-2-thorsten.blum@toblux.com
2024-09-04 12:18:10 +02:00
Thomas Gleixner
eb876ea724 Merge branch 'linus' into smp/core
Pull in upstream changes so further patches don't conflict.
2024-09-04 12:15:38 +02:00
Nysal Jan K.A
6c17ea1f3e cpu/SMT: Enable SMT only if a core is online
If a core is offline then enabling SMT should not online CPUs of
this core. By enabling SMT, what is intended is either changing the SMT
value from "off" to "on" or setting the SMT level (threads per core) from a
lower to higher value.

On PowerPC the ppc64_cpu utility can be used, among other things, to
perform the following functions:

ppc64_cpu --cores-on                # Get the number of online cores
ppc64_cpu --cores-on=X              # Put exactly X cores online
ppc64_cpu --offline-cores=X[,Y,...] # Put specified cores offline
ppc64_cpu --smt={on|off|value}      # Enable, disable or change SMT level

If the user has decided to offline certain cores, enabling SMT should
not online CPUs in those cores. This patch fixes the issue and changes
the behaviour as described, by introducing an arch specific function
topology_is_core_online(). It is currently implemented only for PowerPC.

Fixes: 73c58e7e14 ("powerpc: Add HOTPLUG_SMT support")
Reported-by: Tyrel Datwyler <tyreld@linux.ibm.com>
Closes: https://groups.google.com/g/powerpc-utils-devel/c/wrwVzAAnRlI/m/5KJSoqP4BAAJ
Signed-off-by: Nysal Jan K.A <nysal@linux.ibm.com>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240731030126.956210-2-nysal@linux.ibm.com
2024-08-13 10:31:24 +10:00
Jiaxun Yang
2dce993165 cpu/hotplug: Provide weak fallback for arch_cpuhp_init_parallel_bringup()
CONFIG_HOTPLUG_PARALLEL expects the architecture to implement
arch_cpuhp_init_parallel_bringup() to decide whether paralllel hotplug is
possible and to do the necessary architecture specific initialization.

There are architectures which can enable it unconditionally and do not
require architecture specific initialization.

Provide a weak fallback for arch_cpuhp_init_parallel_bringup() so that
such architectures are not forced to implement empty stub functions.

Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240716-loongarch-hotplug-v3-2-af59b3bb35c8@flygoat.com
2024-08-02 16:13:46 +02:00
Jiaxun Yang
c0e81a455e cpu/hotplug: Make HOTPLUG_PARALLEL independent of HOTPLUG_SMT
Provide stub functions for SMT related parallel bring up functions so that
HOTPLUG_PARALLEL can work without HOTPLUG_SMT.

Signed-off-by: Jiaxun Yang <jiaxun.yang@flygoat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240716-loongarch-hotplug-v3-1-af59b3bb35c8@flygoat.com
2024-08-02 16:06:36 +02:00
Linus Torvalds
98896d8795 Merge tag 'x86_cc_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 confidential computing updates from Borislav Petkov:
 "Unrelated x86/cc changes queued here to avoid ugly cross-merges and
  conflicts:

   - Carve out CPU hotplug function declarations into a separate header
     with the goal to be able to use the lockdep assertions in a more
     flexible manner

   - As a result, refactor cacheinfo code after carving out a function
     to return the cache ID associated with a given cache level

   - Cleanups

  Add support to be able to kexec TDX guests:

   - Expand ACPI MADT CPU offlining support

   - Add machinery to prepare CoCo guests memory before kexec-ing into a
     new kernel

   - Cleanup, readjust and massage related code"

* tag 'x86_cc_for_v6.11_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits)
  ACPI: tables: Print MULTIPROC_WAKEUP when MADT is parsed
  x86/acpi: Add support for CPU offlining for ACPI MADT wakeup method
  x86/mm: Introduce kernel_ident_mapping_free()
  x86/smp: Add smp_ops.stop_this_cpu() callback
  x86/acpi: Do not attempt to bring up secondary CPUs in the kexec case
  x86/acpi: Rename fields in the acpi_madt_multiproc_wakeup structure
  x86/mm: Do not zap page table entries mapping unaccepted memory table during kdump
  x86/mm: Make e820__end_ram_pfn() cover E820_TYPE_ACPI ranges
  x86/tdx: Convert shared memory back to private on kexec
  x86/mm: Add callbacks to prepare encrypted memory for kexec
  x86/tdx: Account shared memory
  x86/mm: Return correct level from lookup_address() if pte is none
  x86/mm: Make x86_platform.guest.enc_status_change_*() return an error
  x86/kexec: Keep CR4.MCE set during kexec for TDX guest
  x86/relocate_kernel: Use named labels for less confusion
  cpu/hotplug, x86/acpi: Disable CPU offlining for ACPI MADT wakeup
  cpu/hotplug: Add support for declaring CPU offlining not supported
  x86/apic: Mark acpi_mp_wake_* variables as __ro_after_init
  x86/acpi: Extract ACPI MADT wakeup code into a separate file
  x86/kexec: Remove spurious unconditional JMP from from identity_mapped()
  ...
2024-07-15 19:36:01 -07:00
Linus Torvalds
c89d780cc1 Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
 "The biggest part is the virtual CPU hotplug that touches ACPI,
  irqchip. We also have some GICv3 optimisation for pseudo-NMIs that has
  been queued via the arm64 tree. Otherwise the usual perf updates,
  kselftest, various small cleanups.

  Core:

   - Virtual CPU hotplug support for arm64 ACPI systems

   - cpufeature infrastructure cleanups and making the FEAT_ECBHB ID
     bits visible to guests

   - CPU errata: expand the speculative SSBS workaround to more CPUs

   - GICv3, use compile-time PMR values: optimise the way regular IRQs
     are masked/unmasked when GICv3 pseudo-NMIs are used, removing the
     need for a static key in fast paths by using a priority value
     chosen dynamically at boot time

  ACPI:

   - 'acpi=nospcr' option to disable SPCR as default console for arm64

   - Move some ACPI code (cpuidle, FFH) to drivers/acpi/arm64/

  Perf updates:

   - Rework of the IMX PMU driver to enable support for I.MX95

   - Enable support for tertiary match groups in the CMN PMU driver

   - Initial refactoring of the CPU PMU code to prepare for the fixed
     instruction counter introduced by Arm v9.4

   - Add missing PMU driver MODULE_DESCRIPTION() strings

   - Hook up DT compatibles for recent CPU PMUs

  Kselftest updates:

   - Kernel mode NEON fp-stress

   - Cleanups, spelling mistakes

  Miscellaneous:

   - arm64 Documentation update with a minor clarification on TBI

   - Fix missing IPI statistics

   - Implement raw_smp_processor_id() using thread_info rather than a
     per-CPU variable (better code generation)

   - Make MTE checking of in-kernel asynchronous tag faults conditional
     on KASAN being enabled

   - Minor cleanups, typos"

* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (69 commits)
  selftests: arm64: tags: remove the result script
  selftests: arm64: tags_test: conform test to TAP output
  perf: add missing MODULE_DESCRIPTION() macros
  arm64: smp: Fix missing IPI statistics
  irqchip/gic-v3: Fix 'broken_rdists' unused warning when !SMP and !ACPI
  ACPI: Add acpi=nospcr to disable ACPI SPCR as default console on ARM64
  Documentation: arm64: Update memory.rst for TBI
  arm64/cpufeature: Replace custom macros with fields from ID_AA64PFR0_EL1
  KVM: arm64: Replace custom macros with fields from ID_AA64PFR0_EL1
  perf: arm_pmuv3: Include asm/arm_pmuv3.h from linux/perf/arm_pmuv3.h
  perf: arm_v6/7_pmu: Drop non-DT probe support
  perf/arm: Move 32-bit PMU drivers to drivers/perf/
  perf: arm_pmuv3: Drop unnecessary IS_ENABLED(CONFIG_ARM64) check
  perf: arm_pmuv3: Avoid assigning fixed cycle counter with threshold
  arm64: Kconfig: Fix dependencies to enable ACPI_HOTPLUG_CPU
  perf: imx_perf: add support for i.MX95 platform
  perf: imx_perf: fix counter start and config sequence
  perf: imx_perf: refactor driver for imx93
  perf: imx_perf: let the driver manage the counter usage rather the user
  perf: imx_perf: add macro definitions for parsing config attr
  ...
2024-07-15 17:06:19 -07:00
Linus Torvalds
0eff0491e7 Merge tag 'smp-core-2024-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull CPU hotplug updates from Thomas Gleixner:
 "A small set of SMP/CPU hotplug updates:

   - Reverse the order of iteration when freezing secondary CPUs for
     hibernation.

     This avoids that drivers like the Intel uncore performance counter
     have to transfer the assignement of handling the per package uncore
     events for every CPU in a package, which is a considerable speedup
     on larger systems.

   - Add a missing destroy_work_on_stack() invocation in
     smp_call_on_cpu() to prevent debug objects to emit a false positive
     warning when the stack is freed.

   - Small cleanups in comments and a str_plural() conversion"

* tag 'smp-core-2024-07-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  smp: Add missing destroy_work_on_stack() call in smp_call_on_cpu()
  cpu/hotplug: Reverse order of iteration in freeze_secondary_cpus()
  smp: Use str_plural() to fix Coccinelle warnings
  cpu/hotplug: Fix typo in comment
2024-07-15 14:55:30 -07:00
James Morse
4e1a7df454 cpumask: Add enabled cpumask for present CPUs that can be brought online
The 'offline' file in sysfs shows all offline CPUs, including those
that aren't present. User-space is expected to remove not-present CPUs
from this list to learn which CPUs could be brought online.

CPUs can be present but not-enabled. These CPUs can't be brought online
until the firmware policy changes, which comes with an ACPI notification
that will register the CPUs.

With only the offline and present files, user-space is unable to
determine which CPUs it can try to bring online. Add a new CPU mask
that shows this based on all the registered CPUs.

Signed-off-by: James Morse <james.morse@arm.com>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Tested-by: Vishnu Pajjuri <vishnu@os.amperecomputing.com>
Tested-by: Jianyong Wu <jianyong.wu@arm.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Gavin Shan <gshan@redhat.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Link: https://lore.kernel.org/r/20240529133446.28446-20-Jonathan.Cameron@huawei.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-06-28 18:38:33 +01:00
Huacai Chen
6ef8eb5125 cpu: Fix broken cmdline "nosmp" and "maxcpus=0"
After the rework of "Parallel CPU bringup", the cmdline "nosmp" and
"maxcpus=0" parameters are not working anymore. These parameters set
setup_max_cpus to zero and that's handed to bringup_nonboot_cpus().

The code there does a decrement before checking for zero, which brings it
into the negative space and brings up all CPUs.

Add a zero check at the beginning of the function to prevent this.

[ tglx: Massaged change log ]

Fixes: 18415f33e2 ("cpu/hotplug: Allow "parallel" bringup up to CPUHP_BP_KICK_AP_STATE")
Fixes: 06c6796e03 ("cpu/hotplug: Fix off by one in cpuhp_bringup_mask()")
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240618081336.3996825-1-chenhuacai@loongson.cn
2024-06-23 20:04:14 +02:00
Kirill A. Shutemov
66e48e491d cpu/hotplug, x86/acpi: Disable CPU offlining for ACPI MADT wakeup
ACPI MADT doesn't allow to offline a CPU after it has been woken up.

Currently, CPU hotplug is prevented based on the confidential computing
attribute which is set for Intel TDX. But TDX is not the only possible user of
the wake up method. Any platform that uses ACPI MADT wakeup method cannot
offline CPU.

Disable CPU offlining on ACPI MADT wakeup enumeration.

This has no visible effects for users: currently, TDX guest is the only platform
that uses the ACPI MADT wakeup method.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Tested-by: Tao Liu <ltao@redhat.com>
Link: https://lore.kernel.org/r/20240614095904.1345461-5-kirill.shutemov@linux.intel.com
2024-06-17 17:45:34 +02:00
Kirill A. Shutemov
1037e4c53e cpu/hotplug: Add support for declaring CPU offlining not supported
The ACPI MADT mailbox wakeup method doesn't allow to offline a CPU after
it has been woken up.

Currently, offlining is prevented based on the confidential computing attribute
which is set for Intel TDX. But TDX is not the only possible user of the wake up
method. The MADT wakeup can be implemented outside of a confidential computing
environment. Offline support is a property of the wakeup method, not the CoCo
implementation.

Introduce cpu_hotplug_disable_offlining() that can be called to indicate that
CPU offlining should be disabled.

This function is going to replace CC_ATTR_HOTPLUG_DISABLED for ACPI MADT wakeup
method.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tao Liu <ltao@redhat.com>
Link: https://lore.kernel.org/r/20240614095904.1345461-4-kirill.shutemov@linux.intel.com
2024-06-17 17:45:31 +02:00
Stanislav Spassov
fde78e4673 cpu/hotplug: Reverse order of iteration in freeze_secondary_cpus()
Whenever CPU hotplug state callbacks are registered, the startup callback
is invoked on CPUs that have already reached the provided state in order of
ascending CPU IDs.

In freeze_secondary_cpus() the teardown of CPUs happens in the same are
invoked in the same order. This is known to make a difference is the
current implementation of these callbacks in arch/x86/events/intel/uncore.c:

 - uncore_event_cpu_online() designates the first CPU it is invoked for
   on each package as the uncore event collector for that package

 - uncore_event_cpu_offline() if the CPU being offlined is the event
   collector for its package, transfers that responsibility over to
   the next (by ascending CPU id) one in the same package

With the current order of CPU teardowns in freeze_secondary_cpus(), the
latter ends up doing the ownership transfer work on every single CPU.  That
work involves a synchronize_rcu() call, ultimately unnecessarily degrading
the performance of CPU offlining.

To address this make freeze_secondary_cpus() iterate through the CPUs in
reverse order, so that the teardown happens in order of descending CPU IDs.

[ tglx: Massage change log ]

Signed-off-by: Stanislav Spassov <stanspas@amazon.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240524160449.48594-1-stanspas@amazon.de
2024-06-17 15:17:44 +02:00
Yuntao Wang
932d847639 cpu/hotplug: Fix dynstate assignment in __cpuhp_setup_state_cpuslocked()
Commit 4205e4786d ("cpu/hotplug: Provide dynamic range for prepare
stage") added a dynamic range for the prepare states, but did not handle
the assignment of the dynstate variable in __cpuhp_setup_state_cpuslocked().

This causes the corresponding startup callback not to be invoked when
calling __cpuhp_setup_state_cpuslocked() with the CPUHP_BP_PREPARE_DYN
parameter, even though it should be.

Currently, the users of __cpuhp_setup_state_cpuslocked(), for one reason or
another, have not triggered this bug.

Fixes: 4205e4786d ("cpu/hotplug: Provide dynamic range for prepare stage")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240515134554.427071-1-ytcoode@gmail.com
2024-06-17 15:08:04 +02:00
Linus Torvalds
de6fef50ea Merge tag 'cgroup-for-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:

 - The locking around cpuset hotplug processing has always been a bit of
   mess which was worked around by making hotplug processing
   asynchronous. The asynchronity isn't great and led to other issues.

   We tried to make the behavior synchronous a while ago but that led to
   lockdep splats. Waiman took another stab at cleaning up and making it
   synchronous. The patch has been in -next for well over a month and
   there haven't been any complaints, so fingers crossed.

 - Tracepoints added to help understanding rstat lock contentions.

 - A bunch of minor changes - doc updates, code cleanups and selftests.

* tag 'cgroup-for-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (24 commits)
  cgroup/rstat: add cgroup_rstat_cpu_lock helpers and tracepoints
  selftests/cgroup: Drop define _GNU_SOURCE
  docs: cgroup-v1: Update page cache removal functions
  selftests/cgroup: fix uninitialized variables in test_zswap.c
  selftests/cgroup: cpu_hogger init: use {} instead of {NULL}
  selftests/cgroup: fix clang warnings: uninitialized fd variable
  selftests/cgroup: fix clang build failures for abs() calls
  cgroup/cpuset: Remove outdated comment in sched_partition_write()
  cgroup/cpuset: Fix incorrect top_cpuset flags
  cgroup/cpuset: Avoid clearing CS_SCHED_LOAD_BALANCE twice
  cgroup/cpuset: Statically initialize more members of top_cpuset
  cgroup: Avoid unnecessary looping in cgroup_no_v1()
  cgroup, legacy_freezer: update comment for freezer_css_offline()
  docs, cgroup: add entries for pids to cgroup-v2.rst
  cgroup: don't call cgroup1_pidlist_destroy_all() for v2
  cgroup_freezer: update comment for freezer_css_online()
  cgroup/rstat: desc member cgrp in cgroup_rstat_flush_release
  cgroup/rstat: add cgroup_rstat_lock helpers and tracepoints
  cgroup/pids: Remove superfluous zeroing
  docs: cgroup-v1: Fix description for css_online
  ...
2024-05-15 17:06:08 -07:00
Sean Christopherson
ce0abef6a1 cpu: Ignore "mitigations" kernel parameter if CPU_MITIGATIONS=n
Explicitly disallow enabling mitigations at runtime for kernels that were
built with CONFIG_CPU_MITIGATIONS=n, as some architectures may omit code
entirely if mitigations are disabled at compile time.

E.g. on x86, a large pile of Kconfigs are buried behind CPU_MITIGATIONS,
and trying to provide sane behavior for retroactively enabling mitigations
is extremely difficult, bordering on impossible.  E.g. page table isolation
and call depth tracking require build-time support, BHI mitigations will
still be off without additional kernel parameters, etc.

  [ bp: Touchups. ]

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240420000556.2645001-3-seanjc@google.com
2024-04-25 15:47:39 +02:00
Sean Christopherson
fe42754b94 cpu: Re-enable CPU mitigations by default for !X86 architectures
Rename x86's to CPU_MITIGATIONS, define it in generic code, and force it
on for all architectures exception x86.  A recent commit to turn
mitigations off by default if SPECULATION_MITIGATIONS=n kinda sorta
missed that "cpu_mitigations" is completely generic, whereas
SPECULATION_MITIGATIONS is x86-specific.

Rename x86's SPECULATIVE_MITIGATIONS instead of keeping both and have it
select CPU_MITIGATIONS, as having two configs for the same thing is
unnecessary and confusing.  This will also allow x86 to use the knob to
manage mitigations that aren't strictly related to speculative
execution.

Use another Kconfig to communicate to common code that CPU_MITIGATIONS
is already defined instead of having x86's menu depend on the common
CPU_MITIGATIONS.  This allows keeping a single point of contact for all
of x86's mitigations, and it's not clear that other architectures *want*
to allow disabling mitigations at compile-time.

Fixes: f337a6a21e ("x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n")
Closes: https://lkml.kernel.org/r/20240413115324.53303a68%40canb.auug.org.au
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Reported-by: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240420000556.2645001-2-seanjc@google.com
2024-04-25 15:47:35 +02:00
Sean Christopherson
f337a6a21e x86/cpu: Actually turn off mitigations by default for SPECULATION_MITIGATIONS=n
Initialize cpu_mitigations to CPU_MITIGATIONS_OFF if the kernel is built
with CONFIG_SPECULATION_MITIGATIONS=n, as the help text quite clearly
states that disabling SPECULATION_MITIGATIONS is supposed to turn off all
mitigations by default.

  │ If you say N, all mitigations will be disabled. You really
  │ should know what you are doing to say so.

As is, the kernel still defaults to CPU_MITIGATIONS_AUTO, which results in
some mitigations being enabled in spite of SPECULATION_MITIGATIONS=n.

Fixes: f43b9876e8 ("x86/retbleed: Add fine grained Kconfig knobs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: stable@vger.kernel.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20240409175108.1512861-2-seanjc@google.com
2024-04-10 16:22:47 +02:00
Waiman Long
2125c0034c cgroup/cpuset: Make cpuset hotplug processing synchronous
Since commit 3a5a6d0c2b03("cpuset: don't nest cgroup_mutex inside
get_online_cpus()"), cpuset hotplug was done asynchronously via a work
function. This is to avoid recursive locking of cgroup_mutex.

Since then, the cgroup locking scheme has changed quite a bit. A
cpuset_mutex was introduced to protect cpuset specific operations.
The cpuset_mutex is then replaced by a cpuset_rwsem. With commit
d74b27d63a ("cgroup/cpuset: Change cpuset_rwsem and hotplug lock
order"), cpu_hotplug_lock is acquired before cpuset_rwsem. Later on,
cpuset_rwsem is reverted back to cpuset_mutex. All these locking changes
allow the hotplug code to call into cpuset core directly.

The following commits were also merged due to the asynchronous nature
of cpuset hotplug processing.

  - commit b22afcdf04 ("cpu/hotplug: Cure the cpusets trainwreck")
  - commit 50e7663233 ("sched/cpuset/pm: Fix cpuset vs. suspend-resume
    bugs")
  - commit 28b89b9e6f ("cpuset: handle race between CPU hotplug and
    cpuset_hotplug_work")

Clean up all these bandages by making cpuset hotplug
processing synchronous again with the exception that the call to
cgroup_transfer_tasks() to transfer tasks out of an empty cgroup v1
cpuset, if necessary, will still be done via a work function due to the
existing cgroup_mutex -> cpu_hotplug_lock dependency. It is possible
to reverse that dependency, but that will require updating a number of
different cgroup controllers. This special hotplug code path should be
rarely taken anyway.

As all the cpuset states will be updated by the end of the hotplug
operation, we can revert most the above commits except commit
50e7663233 ("sched/cpuset/pm: Fix cpuset vs. suspend-resume bugs")
which is partially reverted.  Also removing some cpus_read_lock trylock
attempts in the cpuset partition code as they are no longer necessary
since the cpu_hotplug_lock is now held for the whole duration of the
cpuset hotplug code path.

Signed-off-by: Waiman Long <longman@redhat.com>
Tested-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2024-04-08 07:39:16 -10:00
Linus Torvalds
ca7e917769 Merge tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 APIC updates from Thomas Gleixner:
 "Rework of APIC enumeration and topology evaluation.

  The current implementation has a couple of shortcomings:

   - It fails to handle hybrid systems correctly.

   - The APIC registration code which handles CPU number assignents is
     in the middle of the APIC code and detached from the topology
     evaluation.

   - The various mechanisms which enumerate APICs, ACPI, MPPARSE and
     guest specific ones, tweak global variables as they see fit or in
     case of XENPV just hack around the generic mechanisms completely.

   - The CPUID topology evaluation code is sprinkled all over the vendor
     code and reevaluates global variables on every hotplug operation.

   - There is no way to analyze topology on the boot CPU before bringing
     up the APs. This causes problems for infrastructure like PERF which
     needs to size certain aspects upfront or could be simplified if
     that would be possible.

   - The APIC admission and CPU number association logic is
     incomprehensible and overly complex and needs to be kept around
     after boot instead of completing this right after the APIC
     enumeration.

  This update addresses these shortcomings with the following changes:

   - Rework the CPUID evaluation code so it is common for all vendors
     and provides information about the APIC ID segments in a uniform
     way independent of the number of segments (Thread, Core, Module,
     ..., Die, Package) so that this information can be computed instead
     of rewriting global variables of dubious value over and over.

   - A few cleanups and simplifcations of the APIC, IO/APIC and related
     interfaces to prepare for the topology evaluation changes.

   - Seperation of the parser stages so the early evaluation which tries
     to find the APIC address can be seperately overridden from the late
     evaluation which enumerates and registers the local APIC as further
     preparation for sanitizing the topology evaluation.

   - A new registration and admission logic which

       - encapsulates the inner workings so that parsers and guest logic
         cannot longer fiddle in it

       - uses the APIC ID segments to build topology bitmaps at
         registration time

       - provides a sane admission logic

       - allows to detect the crash kernel case, where CPU0 does not run
         on the real BSP, automatically. This is required to prevent
         sending INIT/SIPI sequences to the real BSP which would reset
         the whole machine. This was so far handled by a tedious command
         line parameter, which does not even work in nested crash
         scenarios.

       - Associates CPU number after the enumeration completed and
         prevents the late registration of APICs, which was somehow
         tolerated before.

   - Converting all parsers and guest enumeration mechanisms over to the
     new interfaces.

     This allows to get rid of all global variable tweaking from the
     parsers and enumeration mechanisms and sanitizes the XEN[PV]
     handling so it can use CPUID evaluation for the first time.

   - Mopping up existing sins by taking the information from the APIC ID
     segment bitmaps.

     This evaluates hybrid systems correctly on the boot CPU and allows
     for cleanups and fixes in the related drivers, e.g. PERF.

  The series has been extensively tested and the minimal late fallout
  due to a broken ACPI/MADT table has been addressed by tightening the
  admission logic further"

* tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits)
  x86/topology: Ignore non-present APIC IDs in a present package
  x86/apic: Build the x86 topology enumeration functions on UP APIC builds too
  smp: Provide 'setup_max_cpus' definition on UP too
  smp: Avoid 'setup_max_cpus' namespace collision/shadowing
  x86/bugs: Use fixed addressing for VERW operand
  x86/cpu/topology: Get rid of cpuinfo::x86_max_cores
  x86/cpu/topology: Provide __num_[cores|threads]_per_package
  x86/cpu/topology: Rename topology_max_die_per_package()
  x86/cpu/topology: Rename smp_num_siblings
  x86/cpu/topology: Retrieve cores per package from topology bitmaps
  x86/cpu/topology: Use topology logical mapping mechanism
  x86/cpu/topology: Provide logical pkg/die mapping
  x86/cpu/topology: Simplify cpu_mark_primary_thread()
  x86/cpu/topology: Mop up primary thread mask handling
  x86/cpu/topology: Use topology bitmaps for sizing
  x86/cpu/topology: Let XEN/PV use topology from CPUID/MADT
  x86/xen/smp_pv: Count number of vCPUs early
  x86/cpu/topology: Assign hotpluggable CPUIDs during init
  x86/cpu/topology: Reject unknown APIC IDs on ACPI hotplug
  x86/topology: Add a mechanism to track topology via APIC IDs
  ...
2024-03-11 15:45:55 -07:00
Linus Torvalds
d08c407f71 Merge tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "A large set of updates and features for timers and timekeeping:

   - The hierarchical timer pull model

     When timer wheel timers are armed they are placed into the timer
     wheel of a CPU which is likely to be busy at the time of expiry.
     This is done to avoid wakeups on potentially idle CPUs.

     This is wrong in several aspects:

       1) The heuristics to select the target CPU are wrong by
          definition as the chance to get the prediction right is
          close to zero.

       2) Due to #1 it is possible that timers are accumulated on
          a single target CPU

       3) The required computation in the enqueue path is just overhead
          for dubious value especially under the consideration that the
          vast majority of timer wheel timers are either canceled or
          rearmed before they expire.

     The timer pull model avoids the above by removing the target
     computation on enqueue and queueing timers always on the CPU on
     which they get armed.

     This is achieved by having separate wheels for CPU pinned timers
     and global timers which do not care about where they expire.

     As long as a CPU is busy it handles both the pinned and the global
     timers which are queued on the CPU local timer wheels.

     When a CPU goes idle it evaluates its own timer wheels:

       - If the first expiring timer is a pinned timer, then the global
         timers can be ignored as the CPU will wake up before they
         expire.

       - If the first expiring timer is a global timer, then the expiry
         time is propagated into the timer pull hierarchy and the CPU
         makes sure to wake up for the first pinned timer.

     The timer pull hierarchy organizes CPUs in groups of eight at the
     lowest level and at the next levels groups of eight groups up to
     the point where no further aggregation of groups is required, i.e.
     the number of levels is log8(NR_CPUS). The magic number of eight
     has been established by experimention, but can be adjusted if
     needed.

     In each group one busy CPU acts as the migrator. It's only one CPU
     to avoid lock contention on remote timer wheels.

     The migrator CPU checks in its own timer wheel handling whether
     there are other CPUs in the group which have gone idle and have
     global timers to expire. If there are global timers to expire, the
     migrator locks the remote CPU timer wheel and handles the expiry.

     Depending on the group level in the hierarchy this handling can
     require to walk the hierarchy downwards to the CPU level.

     Special care is taken when the last CPU goes idle. At this point
     the CPU is the systemwide migrator at the top of the hierarchy and
     it therefore cannot delegate to the hierarchy. It needs to arm its
     own timer device to expire either at the first expiring timer in
     the hierarchy or at the first CPU local timer, which ever expires
     first.

     This completely removes the overhead from the enqueue path, which
     is e.g. for networking a true hotpath and trades it for a slightly
     more complex idle path.

     This has been in development for a couple of years and the final
     series has been extensively tested by various teams from silicon
     vendors and ran through extensive CI.

     There have been slight performance improvements observed on network
     centric workloads and an Intel team confirmed that this allows them
     to power down a die completely on a mult-die socket for the first
     time in a mostly idle scenario.

     There is only one outstanding ~1.5% regression on a specific
     overloaded netperf test which is currently investigated, but the
     rest is either positive or neutral performance wise and positive on
     the power management side.

   - Fixes for the timekeeping interpolation code for cross-timestamps:

     cross-timestamps are used for PTP to get snapshots from hardware
     timers and interpolated them back to clock MONOTONIC. The changes
     address a few corner cases in the interpolation code which got the
     math and logic wrong.

   - Simplifcation of the clocksource watchdog retry logic to
     automatically adjust to handle larger systems correctly instead of
     having more incomprehensible command line parameters.

   - Treewide consolidation of the VDSO data structures.

   - The usual small improvements and cleanups all over the place"

* tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
  timer/migration: Fix quick check reporting late expiry
  tick/sched: Fix build failure for CONFIG_NO_HZ_COMMON=n
  vdso/datapage: Quick fix - use asm/page-def.h for ARM64
  timers: Assert no next dyntick timer look-up while CPU is offline
  tick: Assume timekeeping is correctly handed over upon last offline idle call
  tick: Shut down low-res tick from dying CPU
  tick: Split nohz and highres features from nohz_mode
  tick: Move individual bit features to debuggable mask accesses
  tick: Move got_idle_tick away from common flags
  tick: Assume the tick can't be stopped in NOHZ_MODE_INACTIVE mode
  tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING
  tick: Move tick cancellation up to CPUHP_AP_TICK_DYING
  tick: Start centralizing tick related CPU hotplug operations
  tick/sched: Don't clear ts::next_tick again in can_stop_idle_tick()
  tick/sched: Rename tick_nohz_stop_sched_tick() to tick_nohz_full_stop_tick()
  tick: Use IS_ENABLED() whenever possible
  tick/sched: Remove useless oneshot ifdeffery
  tick/nohz: Remove duplicate between lowres and highres handlers
  tick/nohz: Remove duplicate between tick_nohz_switch_to_nohz() and tick_setup_sched_timer()
  hrtimer: Select housekeeping CPU during migration
  ...
2024-03-11 14:38:26 -07:00
Ingo Molnar
4c8a498541 smp: Avoid 'setup_max_cpus' namespace collision/shadowing
bringup_nonboot_cpus() gets passed the 'setup_max_cpus'
variable in init/main.c - which is also the name of the parameter,
shadowing the name.

To reduce confusion and to allow the 'setup_max_cpus' value
to be #defined in the <linux/smp.h> header, use the 'max_cpus'
name for the function parameter name.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
2024-02-27 10:05:32 +01:00
Frederic Weisbecker
500f8f9bce tick: Assume timekeeping is correctly handed over upon last offline idle call
The timekeeping duty is handed over from the outgoing CPU on stop
machine, then the oneshot tick is stopped right after.  Therefore it's
guaranteed that the current CPU isn't the timekeeper upon its last call
to idle.

Besides, calling tick_nohz_idle_stop_tick() while the dying CPU goes
into idle suggests that the tick is going to be stopped while it is
actually stopped already from the appropriate CPU hotplug state.

Remove the confusing call and the obsolete case handling and convert it
to a sanity check that verifies the above assumption.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240225225508.11587-16-frederic@kernel.org
2024-02-26 11:37:32 +01:00
Frederic Weisbecker
ef8969bb55 tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING
The broadcast shutdown code is executed through a random explicit call
within stop machine from the outgoing CPU.

However the tick broadcast is a midware between the tick callback and
the clocksource, therefore it makes more sense to shut it down after the
tick callback and before the clocksource drivers.

Move it instead to the common tick shutdown CPU hotplug state where
related operations can be ordered from highest to lowest level.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240225225508.11587-10-frederic@kernel.org
2024-02-26 11:37:32 +01:00
Frederic Weisbecker
3ad6eb0683 tick: Start centralizing tick related CPU hotplug operations
During the CPU offlining process, the various timer tick features are
shut down from scattered places, sometimes from teardown callbacks on
stop machine, sometimes through explicit calls, sometimes from the
control CPU after the CPU died. The reason why these shutdown operations
are spread around is not always clear and it makes the tick lifecycle
hard to follow.

The tick should be shut down in order from highest to lowest level:

On stop machine from the dying CPU (high-level):

 1) Hand-over the timekeeping duty (tick_handover_do_timer())
 2) Cancel the tick implementation called by the clockevent callback
    (tick_cancel_sched_timer())
 3) Shutdown broadcasting (tick_offline_cpu() / tick_broadcast_offline())

On stop machine from the dying CPU (low-level):

 4) Shutdown clockevents drivers (CPUHP_AP_*_TIMER_STARTING states)

From the control CPU after the CPU died (low-level):

 5) Shutdown/unregister/cleanup clockevents for the dead CPU
    (tick_cleanup_dead_cpu())

Instead the current order is 2, 4 (both from CPU hotplug states), then
1 and 3 through direct calls. This layout and order don't make much
sense. The operations 1, 2, 3 should be gathered together and in order.

Sort this situation with creating a new TICK shut-down CPU hotplug state
and start with introducing the timekeeping duty hand-over there. The
state must precede hrtimers migration because the tick hrtimer will be
stopped from it in a further patch.

Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240225225508.11587-8-frederic@kernel.org
2024-02-26 11:37:31 +01:00
Max Kellermann
266e957864 cpu: Remove stray semicolon
This syntax error was introduced by commit da92df490e ("cpu: Mark
cpu_possible_mask as __ro_after_init").

Fixes: da92df490e ("cpu: Mark cpu_possible_mask as __ro_after_init")
Signed-off-by: Max Kellermann <max.kellermann@ionos.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240222114727.1144588-1-max.kellermann@ionos.com
2024-02-22 17:51:14 +01:00
Alexey Dobriyan
da92df490e cpu: Mark cpu_possible_mask as __ro_after_init
cpu_possible_mask is by definition "cpus which could be hotplugged without
reboot". It's a property which is fixed after kernel enumerates the
hardware configuration.

Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/41cd78af-92a3-4f23-8c7a-4316a04a66d8@p183
2024-02-19 18:05:47 +01:00
Li Zhijian
effe6d278e kernel/cpu: Convert snprintf() to sysfs_emit()
Per filesystems/sysfs.rst, show() should only use sysfs_emit()
or sysfs_emit_at() when formatting the value to be returned to user space.

coccinelle complains that there are still a couple of functions that use
snprintf(). Convert them to sysfs_emit().

No functional change intended.

Signed-off-by: Li Zhijian <lizhijian@fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240116045151.3940401-40-lizhijian@fujitsu.com
2024-01-26 18:25:16 +01:00
Randy Dunlap
ef7e585bf4 cpu/hotplug: Delete an extraneous kernel-doc description
struct cpuhp_cpu_state has an extraneous kernel-doc comment for @cpu.
There is no struct member by that name, so remove the comment to
prevent the kernel-doc warning:

  kernel/cpu.c:85: warning: Excess struct member 'cpu' description in 'cpuhp_cpu_state'

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240114030615.30441-1-rdunlap@infradead.org
2024-01-26 17:44:42 +01:00
Linus Torvalds
d30e51aa7b Merge tag 'slab-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:

 - SLUB: delayed freezing of CPU partial slabs (Chengming Zhou)

   Freezing is an operation involving double_cmpxchg() that makes a slab
   exclusive for a particular CPU. Chengming noticed that we use it also
   in situations where we are not yet installing the slab as the CPU
   slab, because freezing also indicates that the slab is not on the
   shared list. This results in redundant freeze/unfreeze operation and
   can be avoided by marking separately the shared list presence by
   reusing the PG_workingset flag.

   This approach neatly avoids the issues described in 9b1ea29bc0
   ("Revert "mm, slub: consider rest of partial list if acquire_slab()
   fails"") as we can now grab a slab from the shared list in a quick
   and guaranteed way without the cmpxchg_double() operation that
   amplifies the lock contention and can fail.

   As a result, lkp has reported 34.2% improvement of
   stress-ng.rawudp.ops_per_sec

 - SLAB removal and SLUB cleanups (Vlastimil Babka)

   The SLAB allocator has been deprecated since 6.5 and nobody has
   objected so far. We agreed at LSF/MM to wait until the next LTS,
   which is 6.6, so we should be good to go now.

   This doesn't yet erase all traces of SLAB outside of mm/ so some dead
   code, comments or documentation remain, and will be cleaned up
   gradually (some series are already in the works).

   Removing the choice of allocators has already allowed to simplify and
   optimize the code wiring up the kmalloc APIs to the SLUB
   implementation.

* tag 'slab-for-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab: (34 commits)
  mm/slub: free KFENCE objects in slab_free_hook()
  mm/slub: handle bulk and single object freeing separately
  mm/slub: introduce __kmem_cache_free_bulk() without free hooks
  mm/slub: fix bulk alloc and free stats
  mm/slub: optimize free fast path code layout
  mm/slub: optimize alloc fastpath code layout
  mm/slub: remove slab_alloc() and __kmem_cache_alloc_lru() wrappers
  mm/slab: move kmalloc() functions from slab_common.c to slub.c
  mm/slab: move kmalloc_slab() to mm/slab.h
  mm/slab: move kfree() from slab_common.c to slub.c
  mm/slab: move struct kmem_cache_node from slab.h to slub.c
  mm/slab: move memcg related functions from slab.h to slub.c
  mm/slab: move pre/post-alloc hooks from slab.h to slub.c
  mm/slab: consolidate includes in the internal mm/slab.h
  mm/slab: move the rest of slub_def.h to mm/slab.h
  mm/slab: move struct kmem_cache_cpu declaration to slub.c
  mm/slab: remove mm/slab.c and slab_def.h
  mm/mempool/dmapool: remove CONFIG_DEBUG_SLAB ifdefs
  mm/slab: remove CONFIG_SLAB code from slab common code
  cpu/hotplug: remove CPUHP_SLAB_PREPARE hooks
  ...
2024-01-09 10:36:07 -08:00
Vlastimil Babka
70da1d01ed cpu/hotplug: remove CPUHP_SLAB_PREPARE hooks
The CPUHP_SLAB_PREPARE hooks are only used by SLAB which is removed.
SLUB defines them as NULL, so we can remove those altogether.

Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: David Rientjes <rientjes@google.com>
Tested-by: David Rientjes <rientjes@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Tested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
2023-12-05 11:17:58 +01:00
Linus Torvalds
b0014556a2 Merge tag 'timers_urgent_for_v6.7_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Borislav Petkov:

 - Do the push of pending hrtimers away from a CPU which is being
   offlined earlier in the offlining process in order to prevent a
   deadlock

* tag 'timers_urgent_for_v6.7_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  hrtimers: Push pending hrtimers away from outgoing CPU earlier
2023-11-19 13:35:07 -08:00
Thomas Gleixner
5c0930ccaa hrtimers: Push pending hrtimers away from outgoing CPU earlier
2b8272ff4a ("cpu/hotplug: Prevent self deadlock on CPU hot-unplug")
solved the straight forward CPU hotplug deadlock vs. the scheduler
bandwidth timer. Yu discovered a more involved variant where a task which
has a bandwidth timer started on the outgoing CPU holds a lock and then
gets throttled. If the lock required by one of the CPU hotplug callbacks
the hotplug operation deadlocks because the unthrottling timer event is not
handled on the dying CPU and can only be recovered once the control CPU
reaches the hotplug state which pulls the pending hrtimers from the dead
CPU.

Solve this by pushing the hrtimers away from the dying CPU in the dying
callbacks. Nothing can queue a hrtimer on the dying CPU at that point because
all other CPUs spin in stop_machine() with interrupts disabled and once the
operation is finished the CPU is marked offline.

Reported-by: Yu Liao <liaoyu15@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Liu Tie <liutie4@huawei.com>
Link: https://lore.kernel.org/r/87a5rphara.ffs@tglx
2023-11-11 18:06:42 +01:00
Linus Torvalds
1e0c505e13 Merge tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic
Pull ia64 removal and asm-generic updates from Arnd Bergmann:

 - The ia64 architecture gets its well-earned retirement as planned,
   now that there is one last (mostly) working release that will be
   maintained as an LTS kernel.

 - The architecture specific system call tables are updated for the
   added map_shadow_stack() syscall and to remove references to the
   long-gone sys_lookup_dcookie() syscall.

* tag 'asm-generic-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
  hexagon: Remove unusable symbols from the ptrace.h uapi
  asm-generic: Fix spelling of architecture
  arch: Reserve map_shadow_stack() syscall number for all architectures
  syscalls: Cleanup references to sys_lookup_dcookie()
  Documentation: Drop or replace remaining mentions of IA64
  lib/raid6: Drop IA64 support
  Documentation: Drop IA64 from feature descriptions
  kernel: Drop IA64 support from sig_fault handlers
  arch: Remove Itanium (IA-64) architecture
2023-11-01 15:28:33 -10:00
Linus Torvalds
2656821f1f Merge tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks
Pull RCU updates from Frederic Weisbecker:

 - RCU torture, locktorture and generic torture infrastructure updates
   that include various fixes, cleanups and consolidations.

   Among the user visible things, ftrace dumps can now be found into
   their own file, and module parameters get better documented and
   reported on dumps.

 - Generic and misc fixes all over the place. Some highlights:

     * Hotplug handling has seen some light cleanups and comments

     * An RCU barrier can now be triggered through sysfs to serialize
       memory stress testing and avoid OOM

     * Object information is now dumped in case of invalid callback
       invocation

     * Also various SRCU issues, too hard to trigger to deserve urgent
       pull requests, have been fixed

 - RCU documentation updates

 - RCU reference scalability test minor fixes and doc improvements.

 - RCU tasks minor fixes

 - Stall detection updates. Introduce RCU CPU Stall notifiers that
   allows a subsystem to provide informations to help debugging. Also
   cure some false positive stalls.

* tag 'rcu-next-v6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks: (56 commits)
  srcu: Only accelerate on enqueue time
  locktorture: Check the correct variable for allocation failure
  srcu: Fix callbacks acceleration mishandling
  rcu: Comment why callbacks migration can't wait for CPUHP_RCUTREE_PREP
  rcu: Standardize explicit CPU-hotplug calls
  rcu: Conditionally build CPU-hotplug teardown callbacks
  rcu: Remove references to rcu_migrate_callbacks() from diagrams
  rcu: Assume rcu_report_dead() is always called locally
  rcu: Assume IRQS disabled from rcu_report_dead()
  rcu: Use rcu_segcblist_segempty() instead of open coding it
  rcu: kmemleak: Ignore kmemleak false positives when RCU-freeing objects
  srcu: Fix srcu_struct node grpmask overflow on 64-bit systems
  torture: Convert parse-console.sh to mktemp
  rcutorture: Traverse possible cpu to set maxcpu in rcu_nocb_toggle()
  rcutorture: Replace schedule_timeout*() 1-jiffy waits with HZ/20
  torture: Add kvm.sh --debug-info argument
  locktorture: Rename readers_bind/writers_bind to bind_readers/bind_writers
  doc: Catch-up update for locktorture module parameters
  locktorture: Add call_rcu_chains module parameter
  locktorture: Add new module parameters to lock_torture_print_module_parms()
  ...
2023-10-30 18:01:41 -10:00
Linus Torvalds
eb55307e67 Merge tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Thomas Gleixner:

 - Limit the hardcoded topology quirk for Hygon CPUs to those which have
   a model ID less than 4.

   The newer models have the topology CPUID leaf 0xB correctly
   implemented and are not affected.

 - Make SMT control more robust against enumeration failures

   SMT control was added to allow controlling SMT at boottime or
   runtime. The primary purpose was to provide a simple mechanism to
   disable SMT in the light of speculation attack vectors.

   It turned out that the code is sensible to enumeration failures and
   worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
   which means the primary thread mask is not set up correctly. By
   chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes
   the hotplug control stay at its default value "enabled". So the mask
   is never evaluated.

   The ongoing rework of the topology evaluation caused XEN/PV to end up
   with smp_num_siblings == 1, which sets the SMT control to "not
   supported" and the empty primary thread mask causes the hotplug core
   to deny the bringup of the APS.

   Make the decision logic more robust and take 'not supported' and 'not
   implemented' into account for the decision whether a CPU should be
   booted or not.

 - Fake primary thread mask for XEN/PV

   Pretend that all XEN/PV vCPUs are primary threads, which makes the
   usage of the primary thread mask valid on XEN/PV. That is consistent
   with because all of the topology information on XEN/PV is fake or
   even non-existent.

 - Encapsulate topology information in cpuinfo_x86

   Move the randomly scattered topology data into a separate data
   structure for readability and as a preparatory step for the topology
   evaluation overhaul.

 - Consolidate APIC ID data type to u32

   It's fixed width hardware data and not randomly u16, int, unsigned
   long or whatever developers decided to use.

 - Cure the abuse of cpuinfo for persisting logical IDs.

   Per CPU cpuinfo is used to persist the logical package and die IDs.
   That's really not the right place simply because cpuinfo is subject
   to be reinitialized when a CPU goes through an offline/online cycle.

   Use separate per CPU data for the persisting to enable the further
   topology management rework. It will be removed once the new topology
   management is in place.

 - Provide a debug interface for inspecting topology information

   Useful in general and extremly helpful for validating the topology
   management rework in terms of correctness or "bug" compatibility.

* tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too
  x86/cpu: Provide debug interface
  x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
  x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
  x86/apic: Use u32 for [gs]et_apic_id()
  x86/apic: Use u32 for phys_pkg_id()
  x86/apic: Use u32 for cpu_present_to_apicid()
  x86/apic: Use u32 for check_apicid_used()
  x86/apic: Use u32 for APIC IDs in global data
  x86/apic: Use BAD_APICID consistently
  x86/cpu: Move cpu_l[l2]c_id into topology info
  x86/cpu: Move logical package and die IDs into topology info
  x86/cpu: Remove pointless evaluation of x86_coreid_bits
  x86/cpu: Move cu_id into topology info
  x86/cpu: Move cpu_core_id into topology info
  hwmon: (fam15h_power) Use topology_core_id()
  scsi: lpfc: Use topology_core_id()
  x86/cpu: Move cpu_die_id into topology info
  x86/cpu: Move phys_proc_id into topology info
  x86/cpu: Encapsulate topology information in cpuinfo_x86
  ...
2023-10-30 17:37:47 -10:00
Ran Xiaokai
38685e2a04 cpu/hotplug: Don't offline the last non-isolated CPU
If a system has isolated CPUs via the "isolcpus=" command line parameter,
then an attempt to offline the last housekeeping CPU will result in a
WARN_ON() when rebuilding the scheduler domains and a subsequent panic due
to and unhandled empty CPU mas in partition_sched_domains_locked().

cpuset_hotplug_workfn()
  rebuild_sched_domains_locked()
    ndoms = generate_sched_domains(&doms, &attr);
      cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN));

Thus results in an empty CPU mask which triggers the warning and then the
subsequent crash:

WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408
Call trace:
 build_sched_domains+0x120c/0x1408
 partition_sched_domains_locked+0x234/0x880
 rebuild_sched_domains_locked+0x37c/0x798
 rebuild_sched_domains+0x30/0x58
 cpuset_hotplug_workfn+0x2a8/0x930

Unable to handle kernel paging request at virtual address fffe80027ab37080
 partition_sched_domains_locked+0x318/0x880
 rebuild_sched_domains_locked+0x37c/0x798

Aside of the resulting crash, it does not make any sense to offline the last
last housekeeping CPU.

Prevent this by masking out the non-housekeeping CPUs when selecting a
target CPU for initiating the CPU unplug operation via the work queue.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ran Xiaokai <ran.xiaokai@zte.com.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/202310171709530660462@zte.com.cn
2023-10-17 21:41:33 +02:00
Thomas Gleixner
d91bdd96b5 cpu/SMT: Make SMT control more robust against enumeration failures
The SMT control mechanism got added as speculation attack vector
mitigation. The implemented logic relies on the primary thread mask to
be set up properly.

This turns out to be an issue with XEN/PV guests because their CPU hotplug
mechanics do not enumerate APICs and therefore the mask is never correctly
populated.

This went unnoticed so far because by chance XEN/PV ends up with
smp_num_siblings == 2. So smt_hotplug_control stays at its default value
CPU_SMT_ENABLED and the primary thread mask is never evaluated in the
context of CPU hotplug.

This stopped "working" with the upcoming overhaul of the topology
evaluation which legitimately provides a fake topology for XEN/PV. That
sets smp_num_siblings to 1, which causes the core CPU hot-plug core to
refuse to bring up the APs.

This happens because smt_hotplug_control is set to CPU_SMT_NOT_SUPPORTED
which causes cpu_smt_allowed() to evaluate the unpopulated primary thread
mask with the conclusion that all non-boot CPUs are not valid to be
plugged.

Make cpu_smt_allowed() more robust and take CPU_SMT_NOT_SUPPORTED and
CPU_SMT_NOT_IMPLEMENTED into account. Rename it to cpu_bootable() while at
it as that makes it more clear what the function is about.

The primary mask issue on x86 XEN/PV needs to be addressed separately as
there are users outside of the CPU hotplug code too.

Fixes: 05736e4ac1 ("cpu/hotplug: Provide knobs to control SMT")
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.149440843@linutronix.de
2023-10-10 14:38:17 +02:00
Frederic Weisbecker
a28ab03b49 rcu: Comment why callbacks migration can't wait for CPUHP_RCUTREE_PREP
The callbacks migration is performed through an explicit call from
the hotplug control CPU right after the death of the target CPU and
before proceeding with the CPUHP_ teardown functions.

This is unusual but necessary and yet uncommented. Summarize the reason
as explained in the changelog of:

	a58163d8ca (rcu: Migrate callbacks earlier in the CPU-offline timeline)

Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-10-04 22:38:35 +02:00
Frederic Weisbecker
448e9f34d9 rcu: Standardize explicit CPU-hotplug calls
rcu_report_dead() and rcutree_migrate_callbacks() have their headers in
rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug
functions.

Also rcu_cpu_starting() and rcu_report_dead() have different naming
conventions while they mirror each other's effects.

Fix the headers and propose a naming that relates both functions and
aligns with the prefix of other rcutree CPU-hotplug functions.

Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-10-04 22:29:45 +02:00
Frederic Weisbecker
c964c1f5ee rcu: Assume rcu_report_dead() is always called locally
rcu_report_dead() has to be called locally by the CPU that is going to
exit the RCU state machine. Passing a cpu argument here is error-prone
and leaves the possibility for a racy remote call.

Use local access instead.

Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
2023-10-04 17:35:56 +02:00
Ard Biesheuvel
cf8e865810 arch: Remove Itanium (IA-64) architecture
The Itanium architecture is obsolete, and an informal survey [0] reveals
that any residual use of Itanium hardware in production is mostly HP-UX
or OpenVMS based. The use of Linux on Itanium appears to be limited to
enthusiasts that occasionally boot a fresh Linux kernel to see whether
things are still working as intended, and perhaps to churn out some
distro packages that are rarely used in practice.

None of the original companies behind Itanium still produce or support
any hardware or software for the architecture, and it is listed as
'Orphaned' in the MAINTAINERS file, as apparently, none of the engineers
that contributed on behalf of those companies (nor anyone else, for that
matter) have been willing to support or maintain the architecture
upstream or even be responsible for applying the odd fix. The Intel
firmware team removed all IA-64 support from the Tianocore/EDK2
reference implementation of EFI in 2018. (Itanium is the original
architecture for which EFI was developed, and the way Linux supports it
deviates significantly from other architectures.) Some distros, such as
Debian and Gentoo, still maintain [unofficial] ia64 ports, but many have
dropped support years ago.

While the argument is being made [1] that there is a 'for the common
good' angle to being able to build and run existing projects such as the
Grid Community Toolkit [2] on Itanium for interoperability testing, the
fact remains that none of those projects are known to be deployed on
Linux/ia64, and very few people actually have access to such a system in
the first place. Even if there were ways imaginable in which Linux/ia64
could be put to good use today, what matters is whether anyone is
actually doing that, and this does not appear to be the case.

There are no emulators widely available, and so boot testing Itanium is
generally infeasible for ordinary contributors. GCC still supports IA-64
but its compile farm [3] no longer has any IA-64 machines. GLIBC would
like to get rid of IA-64 [4] too because it would permit some overdue
code cleanups. In summary, the benefits to the ecosystem of having IA-64
be part of it are mostly theoretical, whereas the maintenance overhead
of keeping it supported is real.

So let's rip off the band aid, and remove the IA-64 arch code entirely.
This follows the timeline proposed by the Debian/ia64 maintainer [5],
which removes support in a controlled manner, leaving IA-64 in a known
good state in the most recent LTS release. Other projects will follow
once the kernel support is removed.

[0] https://lore.kernel.org/all/CAMj1kXFCMh_578jniKpUtx_j8ByHnt=s7S+yQ+vGbKt9ud7+kQ@mail.gmail.com/
[1] https://lore.kernel.org/all/0075883c-7c51-00f5-2c2d-5119c1820410@web.de/
[2] https://gridcf.org/gct-docs/latest/index.html
[3] https://cfarm.tetaneutral.net/machines/list/
[4] https://lore.kernel.org/all/87bkiilpc4.fsf@mid.deneb.enyo.de/
[5] https://lore.kernel.org/all/ff58a3e76e5102c94bb5946d99187b358def688a.camel@physik.fu-berlin.de/

Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
2023-09-11 08:13:17 +00:00
Thomas Gleixner
2b8272ff4a cpu/hotplug: Prevent self deadlock on CPU hot-unplug
Xiongfeng reported and debugged a self deadlock of the task which initiates
and controls a CPU hot-unplug operation vs. the CFS bandwidth timer.

    CPU1      			                 	 CPU2

T1 sets cfs_quota
   starts hrtimer cfs_bandwidth 'period_timer'
T1 is migrated to CPU2				
						T1 initiates offlining of CPU1
Hotplug operation starts
  ...
'period_timer' expires and is re-enqueued on CPU1
  ...
take_cpu_down()
  CPU1 shuts down and does not handle timers
  anymore. They have to be migrated in the
  post dead hotplug steps by the control task.

						T1 runs the post dead offline operation
					      	T1 is scheduled out
						T1 waits for 'period_timer' to expire

T1 waits there forever if it is scheduled out before it can execute the hrtimer
offline callback hrtimers_dead_cpu().

Cure this by delegating the hotplug control operation to a worker thread on
an online CPU. This takes the initiating user space task, which might be
affected by the bandwidth timer, completely out of the picture.

Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Yu Liao <liaoyu15@huawei.com>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/lkml/8e785777-03aa-99e1-d20e-e956f5685be6@huawei.com
Link: https://lore.kernel.org/r/87h6oqdq0i.ffs@tglx
2023-08-30 12:24:22 +02:00
Zhang Rui
52b38b7ad5 cpu/SMT: Fix cpu_smt_possible() comment
Commit e1572f1d08 ("cpu/SMT: create and export cpu_smt_possible()")
introduces cpu_smt_possible() to represent if SMT is theoretically
possible. It returns true when SMT is supported and not forcefully
disabled ('nosmt=force'). But the comment of it says "Returns true if
SMT is not supported of forcefully (irreversibly) disabled", which is
wrong. Fix that comment accordingly.

Signed-off-by: Zhang Rui <rui.zhang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20230728155313.44170-1-rui.zhang@intel.com
2023-07-31 17:32:44 +02:00
Michael Ellerman
7f48405c3c cpu/SMT: Allow enabling partial SMT states via sysfs
Add support to the /sys/devices/system/cpu/smt/control interface for
enabling a specified number of SMT threads per core, including partial
SMT states where not all threads are brought online.

The current interface accepts "on" and "off", to enable either 1 or all
SMT threads per core.

This commit allows writing an integer, between 1 and the number of SMT
threads supported by the machine. Writing 1 is a synonym for "off", 2 or
more enables SMT with the specified number of threads.

When reading the file, if all threads are online "on" is returned, to
avoid changing behaviour for existing users. If some other number of
threads is online then the integer value is returned.

Architectures like x86 only supporting 1 thread or all threads, should not
define CONFIG_SMT_NUM_THREADS_DYNAMIC. Architecture supporting partial SMT
states, like PowerPC, should define it.

[ ldufour: Slightly reword the commit's description ]
[ ldufour: Remove switch() in __store_smt_control() ]
[ ldufour: Rix build issue in control_show() ]

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-8-ldufour@linux.ibm.com
2023-07-28 09:53:37 +02:00
Michael Ellerman
38253464bc cpu/SMT: Create topology_smt_thread_allowed()
Some architectures allows partial SMT states, i.e. when not all SMT threads
are brought online.

To support that, add an architecture helper which checks whether a given
CPU is allowed to be brought online depending on how many SMT threads are
currently enabled. Since this is only applicable to architecture supporting
partial SMT, only these architectures should select the new configuration
variable CONFIG_SMT_NUM_THREADS_DYNAMIC. For the other architectures, not
supporting the partial SMT states, there is no need to define
topology_cpu_smt_allowed(), the generic code assumed that all the threads
are allowed or only the primary ones.

Call the helper from cpu_smt_enable(), and cpu_smt_allowed() when SMT is
enabled, to check if the particular thread should be onlined. Notably,
also call it from cpu_smt_disable() if CPU_SMT_ENABLED, to allow
offlining some threads to move from a higher to lower number of threads
online.

[ ldufour: Slightly reword the commit's description ]
[ ldufour: Introduce CONFIG_SMT_NUM_THREADS_DYNAMIC ]

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-7-ldufour@linux.ibm.com
2023-07-28 09:53:37 +02:00
Laurent Dufour
91b4a7dbfe cpu/SMT: Remove topology_smt_supported()
Since the maximum number of threads is now passed to cpu_smt_set_num_threads(),
checking that value is enough to know whether SMT is supported.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-6-ldufour@linux.ibm.com
2023-07-28 09:53:37 +02:00