Both KASAN and LOCKDEP are commonly enabled in building a debug kernel.
Each of them can significantly slow down the speed of a debug kernel.
Enabling KASAN instrumentation of the LOCKDEP code will further slow
things down.
Since LOCKDEP is a high overhead debugging tool, it will never get
enabled in a production kernel. The LOCKDEP code is also pretty mature
and is unlikely to get major changes. There is also a possibility of
recursion similar to KCSAN.
To evaluate the performance impact of disabling KASAN instrumentation
of lockdep.c, the time to do a parallel build of the Linux defconfig
kernel was used as the benchmark. Two x86-64 systems (Skylake & Zen 2)
and an arm64 system were used as test beds. Two sets of non-RT and RT
kernels with similar configurations except mainly CONFIG_PREEMPT_RT
were used for evaluation.
For the Skylake system:
Kernel Run time Sys time
------ -------- --------
Non-debug kernel (baseline) 0m47.642s 4m19.811s
[CONFIG_KASAN_INLINE=y]
Debug kernel 2m11.108s (x2.8) 38m20.467s (x8.9)
Debug kernel (patched) 1m49.602s (x2.3) 31m28.501s (x7.3)
Debug kernel
(patched + mitigations=off) 1m30.988s (x1.9) 26m41.993s (x6.2)
RT kernel (baseline) 0m54.871s 7m15.340s
[CONFIG_KASAN_INLINE=n]
RT debug kernel 6m07.151s (x6.7) 135m47.428s (x18.7)
RT debug kernel (patched) 3m42.434s (x4.1) 74m51.636s (x10.3)
RT debug kernel
(patched + mitigations=off) 2m40.383s (x2.9) 57m54.369s (x8.0)
[CONFIG_KASAN_INLINE=y]
RT debug kernel 3m22.155s (x3.7) 77m53.018s (x10.7)
RT debug kernel (patched) 2m36.700s (x2.9) 54m31.195s (x7.5)
RT debug kernel
(patched + mitigations=off) 2m06.110s (x2.3) 45m49.493s (x6.3)
For the Zen 2 system:
Kernel Run time Sys time
------ -------- --------
Non-debug kernel (baseline) 1m42.806s 39m48.714s
[CONFIG_KASAN_INLINE=y]
Debug kernel 4m04.524s (x2.4) 125m35.904s (x3.2)
Debug kernel (patched) 3m56.241s (x2.3) 127m22.378s (x3.2)
Debug kernel
(patched + mitigations=off) 2m38.157s (x1.5) 92m35.680s (x2.3)
RT kernel (baseline) 1m51.500s 14m56.322s
[CONFIG_KASAN_INLINE=n]
RT debug kernel 16m04.962s (x8.7) 244m36.463s (x16.4)
RT debug kernel (patched) 9m09.073s (x4.9) 129m28.439s (x8.7)
RT debug kernel
(patched + mitigations=off) 3m31.662s (x1.9) 51m01.391s (x3.4)
For the arm64 system:
Kernel Run time Sys time
------ -------- --------
Non-debug kernel (baseline) 1m56.844s 8m47.150s
Debug kernel 3m54.774s (x2.0) 92m30.098s (x10.5)
Debug kernel (patched) 3m32.429s (x1.8) 77m40.779s (x8.8)
RT kernel (baseline) 4m01.641s 18m16.777s
[CONFIG_KASAN_INLINE=n]
RT debug kernel 19m32.977s (x4.9) 304m23.965s (x16.7)
RT debug kernel (patched) 16m28.354s (x4.1) 234m18.149s (x12.8)
Turning the mitigations off doesn't seems to have any noticeable impact
on the performance of the arm64 system. So the mitigation=off entries
aren't included.
For the x86 CPUs, CPU mitigations has a much bigger
impact on performance, especially the RT debug kernel with
CONFIG_KASAN_INLINE=n. The SRSO mitigation in Zen 2 has an especially
big impact on the debug kernel. It is also the majority of the slowdown
with mitigations on. It is because the patched RET instruction slows
down function returns. A lot of helper functions that are normally
compiled out or inlined may become real function calls in the debug
kernel.
With !CONFIG_KASAN_INLINE, the KASAN instrumentation inserts a
lot of __asan_loadX*() and __kasan_check_read() function calls to memory
access portion of the code. The lockdep's __lock_acquire() function,
for instance, has 66 __asan_loadX*() and 6 __kasan_check_read() calls
added with KASAN instrumentation. Of course, the actual numbers may vary
depending on the compiler used and the exact version of the lockdep code.
With the Skylake test system, the parallel kernel build times reduction
of the RT debug kernel with this patch are:
CONFIG_KASAN_INLINE=n: -37%
CONFIG_KASAN_INLINE=y: -22%
The time reduction is less with CONFIG_KASAN_INLINE=y, but it is still
significant.
Setting CONFIG_KASAN_INLINE=y can result in a significant performance
improvement. The major drawback is a significant increase in the size
of kernel text. In the case of vmlinux, its text size increases from
45997948 to 67606807. That is a 47% size increase (about 21 Mbytes). The
size increase of other kernel modules should be similar.
With the newly added rtmutex and lockdep lock events, the relevant
event counts for the test runs with the Skylake system were:
Event type Debug kernel RT debug kernel
---------- ------------ ---------------
lockdep_acquire 1,968,663,277 5,425,313,953
rtlock_slowlock - 401,701,156
rtmutex_slowlock - 139,672
The __lock_acquire() calls in the RT debug kernel are x2.8 times of the
non-RT debug kernel with the same workload. Since the __lock_acquire()
function is a big hitter in term of performance slowdown, this makes
the RT debug kernel much slower than the non-RT one. The average lock
nesting depth is likely to be higher in the RT debug kernel too leading
to longer execution time in the __lock_acquire() function.
As the small advantage of enabling KASAN instrumentation to catch
potential memory access error in the lockdep debugging tool is probably
not worth the drawback of further slowing down a debug kernel, disable
KASAN instrumentation in the lockdep code to allow the debug kernels
to regain some performance back, especially for the RT debug kernels.
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250307232717.1759087-6-boqun.feng@gmail.com
A circular lock dependency splat has been seen involving down_trylock():
======================================================
WARNING: possible circular locking dependency detected
6.12.0-41.el10.s390x+debug
------------------------------------------------------
dd/32479 is trying to acquire lock:
0015a20accd0d4f8 ((console_sem).lock){-.-.}-{2:2}, at: down_trylock+0x26/0x90
but task is already holding lock:
000000017e461698 (&zone->lock){-.-.}-{2:2}, at: rmqueue_bulk+0xac/0x8f0
the existing dependency chain (in reverse order) is:
-> #4 (&zone->lock){-.-.}-{2:2}:
-> #3 (hrtimer_bases.lock){-.-.}-{2:2}:
-> #2 (&rq->__lock){-.-.}-{2:2}:
-> #1 (&p->pi_lock){-.-.}-{2:2}:
-> #0 ((console_sem).lock){-.-.}-{2:2}:
The console_sem -> pi_lock dependency is due to calling try_to_wake_up()
while holding the console_sem raw_spinlock. This dependency can be broken
by using wake_q to do the wakeup instead of calling try_to_wake_up()
under the console_sem lock. This will also make the semaphore's
raw_spinlock become a terminal lock without taking any further locks
underneath it.
The hrtimer_bases.lock is a raw_spinlock while zone->lock is a
spinlock. The hrtimer_bases.lock -> zone->lock dependency happens via
the debug_objects_fill_pool() helper function in the debugobjects code.
-> #4 (&zone->lock){-.-.}-{2:2}:
__lock_acquire+0xe86/0x1cc0
lock_acquire.part.0+0x258/0x630
lock_acquire+0xb8/0xe0
_raw_spin_lock_irqsave+0xb4/0x120
rmqueue_bulk+0xac/0x8f0
__rmqueue_pcplist+0x580/0x830
rmqueue_pcplist+0xfc/0x470
rmqueue.isra.0+0xdec/0x11b0
get_page_from_freelist+0x2ee/0xeb0
__alloc_pages_noprof+0x2c2/0x520
alloc_pages_mpol_noprof+0x1fc/0x4d0
alloc_pages_noprof+0x8c/0xe0
allocate_slab+0x320/0x460
___slab_alloc+0xa58/0x12b0
__slab_alloc.isra.0+0x42/0x60
kmem_cache_alloc_noprof+0x304/0x350
fill_pool+0xf6/0x450
debug_object_activate+0xfe/0x360
enqueue_hrtimer+0x34/0x190
__run_hrtimer+0x3c8/0x4c0
__hrtimer_run_queues+0x1b2/0x260
hrtimer_interrupt+0x316/0x760
do_IRQ+0x9a/0xe0
do_irq_async+0xf6/0x160
Normally a raw_spinlock to spinlock dependency is not legitimate
and will be warned if CONFIG_PROVE_RAW_LOCK_NESTING is enabled,
but debug_objects_fill_pool() is an exception as it explicitly
allows this dependency for non-PREEMPT_RT kernel without causing
PROVE_RAW_LOCK_NESTING lockdep splat. As a result, this dependency is
legitimate and not a bug.
Anyway, semaphore is the only locking primitive left that is still
using try_to_wake_up() to do wakeup inside critical section, all the
other locking primitives had been migrated to use wake_q to do wakeup
outside of the critical section. It is also possible that there are
other circular locking dependencies involving printk/console_sem or
other existing/new semaphores lurking somewhere which may show up in
the future. Let just do the migration now to wake_q to avoid headache
like this.
Reported-by: yzbot+ed801a886dfdbfe7136d@syzkaller.appspotmail.com
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250307232717.1759087-3-boqun.feng@gmail.com
Scenario: In platform_device_register, the driver misuses struct
device as platform_data, making kmemdup duplicate a device. Accessing
the duplicate may cause list corruption due to its mutex magic or list
holding old content.
It recurs randomly as the first mutex - getting process skips the slow
path and mutex check. Adding MUTEX_WARN_ON(lock->magic!= lock) in
__mutex_trylock_fast() makes it always happen.
Signed-off-by: Yunhui Cui <cuiyunhui@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20250126033243.53069-1-cuiyunhui@bytedance.com
Add the const qualifier to all the ctl_tables in the tree except for
watchdog_hardlockup_sysctl, memory_allocation_profiling_sysctls,
loadpin_sysctl_table and the ones calling register_net_sysctl (./net,
drivers/inifiniband dirs). These are special cases as they use a
registration function with a non-const qualified ctl_table argument or
modify the arrays before passing them on to the registration function.
Constifying ctl_table structs will prevent the modification of
proc_handler function pointers as the arrays would reside in .rodata.
This is made possible after commit 78eb4ea25c ("sysctl: treewide:
constify the ctl_table argument of proc_handlers") constified all the
proc_handlers.
Created this by running an spatch followed by a sed command:
Spatch:
virtual patch
@
depends on !(file in "net")
disable optional_qualifier
@
identifier table_name != {
watchdog_hardlockup_sysctl,
iwcm_ctl_table,
ucma_ctl_table,
memory_allocation_profiling_sysctls,
loadpin_sysctl_table
};
@@
+ const
struct ctl_table table_name [] = { ... };
sed:
sed --in-place \
-e "s/struct ctl_table .table = &uts_kern/const struct ctl_table *table = \&uts_kern/" \
kernel/utsname_sysctl.c
Reviewed-by: Song Liu <song@kernel.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org> # for kernel/trace/
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> # SCSI
Reviewed-by: Darrick J. Wong <djwong@kernel.org> # xfs
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Corey Minyard <cminyard@mvista.com>
Acked-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Bill O'Donnell <bodonnel@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Ashutosh Dixit <ashutosh.dixit@intel.com>
Acked-by: Anna Schumaker <anna.schumaker@oracle.com>
Signed-off-by: Joel Granados <joel.granados@kernel.org>
Pull RCU updates from Uladzislau Rezki:
"Misc fixes:
- check if IRQs are disabled in rcu_exp_need_qs()
- instrument KCSAN exclusive-writer assertions
- add extra WARN_ON_ONCE() check
- set the cpu_no_qs.b.exp under lock
- warn if callback enqueued on offline CPU
Torture-test updates:
- add rcutorture.preempt_duration kernel module parameter
- make the TREE03 scenario do preemption
- improve pooling timeouts for rcu_torture_writer()
- improve output of "Failure/close-call rcutorture reader segments"
- add some reader-state debugging checks
- update doc of polled APIs
- add extra diagnostics for per-reader-segment preemption
- add an extra test for sched_clock()
- improve testing on unresponsive systems
SRCU updates:
- improve doc for srcu_read_lock() in terms of return value
- fix typo in comments
- remove redundant GP sequence checks in the srcu_funnel_gp_start"
* tag 'rcu.release.v6.14' of git://git.kernel.org/pub/scm/linux/kernel/git/rcu/linux: (31 commits)
srcu: Remove redundant GP sequence checks in srcu_funnel_gp_start
srcu: Fix typo s/srcu_check_read_flavor()/__srcu_check_read_flavor()/
srcu: Guarantee non-negative return value from srcu_read_lock()
MAINTAINERS: Update RCU git tree
rcu: Add lockdep_assert_irqs_disabled() to rcu_exp_need_qs()
rcu: Add KCSAN exclusive-writer assertions for rdp->cpu_no_qs.b.exp
rcu: Make preemptible rcu_exp_handler() check idempotency
rcu: Replace open-coded rcu_exp_need_qs() from rcu_exp_handler() with call
rcu: Move rcu_report_exp_rdp() setting of ->cpu_no_qs.b.exp under lock
rcu: Make rcu_report_exp_cpu_mult() caller acquire lock
rcu: Report callbacks enqueued on offline CPU blind spot
rcutorture: Use symbols for SRCU reader flavors
rcutorture: Add per-reader-segment preemption diagnostics
rcutorture: Read CPU ID for decoration protected by both reader types
rcutorture: Add preempt_count() to rcutorture_one_extend_check() diagnostics
rcutorture: Add parameters to control polled/conditional wait interval
rcutorture: Add documentation for recent conditional and polled APIs
rcutorture: Ignore attempts to test preemption and forward progress
rcutorture: Make rcutorture_one_extend() check reader state
rcutorture: Pretty-print rcutorture reader segments
...
Lockdep changes for v6.14:
- Use swap() macro in the ww_mutex test.
- Minor fixes and documentation for lockdep configs on internal data structure sizes.
- Some "-Wunused-function" warning fixes for Clang.
Rust locking changes for v6.14:
- Add Rust locking files into LOCKING PRIMITIVES maintainer entry.
- Add `Lock<(), ..>::from_raw()` function to support abstraction on low level locking.
- Expose `Guard::new()` for public usage and add type alias for spinlock and mutex guards.
- Add lockdep checking when creating a new lock `Guard`.
A common pattern seen when wake_qs are used to defer a wakeup
until after a lock is released is something like:
preempt_disable();
raw_spin_unlock(lock);
wake_up_q(wake_q);
preempt_enable();
So create some raw_spin_unlock*_wake() helper functions to clean
this up.
Applies on top of the fix I submitted here:
https://lore.kernel.org/lkml/20241212222138.2400498-1-jstultz@google.com/
NOTE: I recognise the unlock()/unlock_irq()/unlock_irqrestore()
variants creates its own duplication, which we could use a macro
to generate the similar functions, but I often dislike how those
generation macros making finding the actual implementation
harder, so I left the three functions as is. If folks would
prefer otherwise, let me know and I'll switch it.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241217040803.243420-1-jstultz@google.com
When lockdep_assert_locked() is unused, it prevents kernel builds
with clang, `make W=1` and CONFIG_WERROR=y, CONFIG_LOCKDEP=y and
CONFIG_PROVE_LOCKING=n:
kernel/locking/lockdep.c:160:20: error: unused function 'lockdep_assert_locked' [-Werror,-Wunused-function]
Fix this by moving it under the respective ifdeffery.
See also commit 6863f5643d ("kbuild: allow Clang to find unused static
inline functions for W=1 build").
[Boqun: add more config information of the error]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20241202193445.769567-1-andriy.shevchenko@linux.intel.com
When chain_hlock_class_idx() is unused, it prevents kernel builds with
clang, `make W=1` and CONFIG_WERROR=y, CONFIG_LOCKDEP=y and
CONFIG_PROVE_LOCKING=n:
kernel/locking/lockdep.c:435:28: error: unused function 'chain_hlock_class_idx' [-Werror,-Wunused-function]
Fix this by marking it with __maybe_unused.
See also commit 6863f5643d ("kbuild: allow Clang to find unused static
inline functions for W=1 build").
[Boqun: add more config information of the error]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20241209170810.1485183-1-andriy.shevchenko@linux.intel.com
Bert reported seeing occasional boot hangs when running with
PREEPT_RT and bisected it down to commit 894d1b3db4
("locking/mutex: Remove wakeups from under mutex::wait_lock").
It looks like I missed a few spots where we drop the wait_lock and
potentially call into schedule without waking up the tasks on the
wake_q structure. Since the tasks being woken are ww_mutex tasks
they need to be able to run to release the mutex and unblock the
task that currently is planning to wake them. Thus we can deadlock.
So make sure we wake the wake_q tasks when we unlock the wait_lock.
Closes: https://lore.kernel.org/lkml/20241211182502.2915-1-spasswolf@web.de
Fixes: 894d1b3db4 ("locking/mutex: Remove wakeups from under mutex::wait_lock")
Reported-by: Bert Karwatzki <spasswolf@web.de>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241212222138.2400498-1-jstultz@google.com
Current use cases of torture_sched_setaffinity() are well served by its
unconditional warning on error. However, an upcoming use case for a
preemption kthread needs to avoid warnings that might otherwise arise
when that kthread attempted to bind itself to a CPU on its way offline.
This commit therefore adds a dowarn argument that, when false, suppresses
the warning.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Anders had bisected a crash using PREEMPT_RT with linux-next and
isolated it down to commit 894d1b3db4 ("locking/mutex: Remove
wakeups from under mutex::wait_lock"), where it seemed the
wake_q structure was somehow getting corrupted causing a null
pointer traversal.
I was able to easily repoduce this with PREEMPT_RT and managed
to isolate down that through various call stacks we were
actually calling wake_up_q() twice on the same wake_q.
I found that in the problematic commit, I had added the
wake_up_q() call in task_blocks_on_rt_mutex() around
__ww_mutex_add_waiter(), following a similar pattern in
__mutex_lock_common().
However, its just wrong. We haven't dropped the lock->wait_lock,
so its contrary to the point of the original patch. And it
didn't match the __mutex_lock_common() logic of re-initializing
the wake_q after calling it midway in the stack.
Looking at it now, the wake_up_q() call is incorrect and should
just be removed. So drop the erronious logic I had added.
Fixes: 894d1b3db4 ("locking/mutex: Remove wakeups from under mutex::wait_lock")
Closes: https://lore.kernel.org/lkml/6afb936f-17c7-43fa-90e0-b9e780866097@app.fastmail.com/
Reported-by: Anders Roxell <anders.roxell@linaro.org>
Reported-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20241114190051.552665-1-jstultz@google.com
Replace this pattern in osq_unlock():
atomic_cmpxchg(*ptr, old, new) == old
... with the simpler and faster:
atomic_try_cmpxchg(*ptr, &old, new)
The x86 CMPXCHG instruction returns success in the ZF flag,
so this change saves a compare after the CMPXCHG. The code
in the fast path of osq_unlock() improves from:
11b: 31 c9 xor %ecx,%ecx
11d: 8d 50 01 lea 0x1(%rax),%edx
120: 89 d0 mov %edx,%eax
122: f0 0f b1 0f lock cmpxchg %ecx,(%rdi)
126: 39 c2 cmp %eax,%edx
128: 75 05 jne 12f <...>
to:
12b: 31 d2 xor %edx,%edx
12d: 83 c0 01 add $0x1,%eax
130: f0 0f b1 17 lock cmpxchg %edx,(%rdi)
134: 75 05 jne 13b <...>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lore.kernel.org/r/20241001114606.820277-1-ubizjak@gmail.com
Every lock, that becomes a sleeping lock on PREEMPT_RT, starts a RCU read
side critical section. There is no sparse annotation for this and sparse
complains about unbalanced locking.
Add __acquires/ __releases for the RCU lock. This covers all but the
trylock functions. A __cond_acquires() annotation didn't work.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/all/20240812104200.2239232-4-bigeasy@linutronix.de
Add a function to check that an offline CPU has left the tracing
infrastructure in a sane state.
Commit 9bb69ba4c1 ("ACPI: processor_idle: use raw_safe_halt() in
acpi_idle_play_dead()") fixed an issue where the acpi_idle_play_dead()
function called safe_halt() instead of raw_safe_halt(), which had the
side-effect of setting the hardirqs_enabled flag for the offline CPU.
On x86 this triggered warnings from lockdep_assert_irqs_disabled() when
the CPU was brought back online again later. These warnings were too
early for the exception to be handled correctly, leading to a
triple-fault.
Add lockdep_cleanup_dead_cpu() to check for this kind of failure mode,
print the events leading up to it, and correct it so that the CPU can
come online again correctly. Re-introducing the original bug now merely
results in this warning instead:
[ 61.556652] smpboot: CPU 1 is now offline
[ 61.556769] CPU 1 left hardirqs enabled!
[ 61.556915] irq event stamp: 128149
[ 61.556965] hardirqs last enabled at (128149): [<ffffffff81720a36>] acpi_idle_play_dead+0x46/0x70
[ 61.557055] hardirqs last disabled at (128148): [<ffffffff81124d50>] do_idle+0x90/0xe0
[ 61.557117] softirqs last enabled at (128078): [<ffffffff81cec74c>] __do_softirq+0x31c/0x423
[ 61.557199] softirqs last disabled at (128065): [<ffffffff810baae1>] __irq_exit_rcu+0x91/0x100
[boqun: Capitalize the title and reword the message a bit]
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/f7bd2b3b999051bb3ef4be34526a9262008285f5.camel@infradead.org
With the proxy-execution series, we traverse the task->mutex->task
blocked_on/owner chain in the scheduler core. We do this while holding
the rq::lock to keep the structures in place while taking and
releasing the alternating lock types.
Since the mutex::wait_lock is one of the locks we will take in this
way under the rq::lock in the scheduler core, we need to make sure
that its usage elsewhere is irq safe.
[rebase & fix {un,}lock_wait_lock helpers in ww_mutex.h]
Signed-off-by: Juri Lelli <juri.lelli@redhat.com>
Signed-off-by: Connor O'Brien <connoro@google.com>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Metin Kaya <metin.kaya@arm.com>
Reviewed-by: Valentin Schneider <vschneid@redhat.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Tested-by: Metin Kaya <metin.kaya@arm.com>
Link: https://lore.kernel.org/r/20241009235352.1614323-3-jstultz@google.com
When using mutex_acquire_nest() with a nest_lock, lockdep refcounts the
number of acquired lockdep_maps of mutexes of the same class, and also
keeps a pointer to the first acquired lockdep_map of a class. That pointer
is then used for various comparison-, printing- and checking purposes,
but there is no mechanism to actively ensure that lockdep_map stays in
memory. Instead, a warning is printed if the lockdep_map is freed and
there are still held locks of the same lock class, even if the lockdep_map
itself has been released.
In the context of WW/WD transactions that means that if a user unlocks
and frees a ww_mutex from within an ongoing ww transaction, and that
mutex happens to be the first ww_mutex grabbed in the transaction,
such a warning is printed and there might be a risk of a UAF.
Note that this is only problem when lockdep is enabled and affects only
dereferences of struct lockdep_map.
Adjust to this by adding a fake lockdep_map to the acquired context and
make sure it is the first acquired lockdep map of the associated
ww_mutex class. Then hold it for the duration of the WW/WD transaction.
This has the side effect that trying to lock a ww mutex *without* a
ww_acquire_context but where a such context has been acquire, we'd see
a lockdep splat. The test-ww_mutex.c selftest attempts to do that, so
modify that particular test to not acquire a ww_acquire_context if it
is not going to be used.
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241009092031.6356-1-thomas.hellstrom@linux.intel.com
If CONFIG_GENERIC_LOCKBREAK=y and CONFIG_DEBUG_LOCK_ALLOC=n
(e.g. sh/sdk7786_defconfig):
kernel/locking/spinlock.c:68:17: warning: no previous prototype for '__raw_spin_lock' [-Wmissing-prototypes]
kernel/locking/spinlock.c:80:26: warning: no previous prototype for '__raw_spin_lock_irqsave' [-Wmissing-prototypes]
kernel/locking/spinlock.c:98:17: warning: no previous prototype for '__raw_spin_lock_irq' [-Wmissing-prototypes]
kernel/locking/spinlock.c:103:17: warning: no previous prototype for '__raw_spin_lock_bh' [-Wmissing-prototypes]
kernel/locking/spinlock.c:68:17: warning: no previous prototype for '__raw_read_lock' [-Wmissing-prototypes]
kernel/locking/spinlock.c:80:26: warning: no previous prototype for '__raw_read_lock_irqsave' [-Wmissing-prototypes]
kernel/locking/spinlock.c:98:17: warning: no previous prototype for '__raw_read_lock_irq' [-Wmissing-prototypes]
kernel/locking/spinlock.c:103:17: warning: no previous prototype for '__raw_read_lock_bh' [-Wmissing-prototypes]
kernel/locking/spinlock.c:68:17: warning: no previous prototype for '__raw_write_lock' [-Wmissing-prototypes]
kernel/locking/spinlock.c:80:26: warning: no previous prototype for '__raw_write_lock_irqsave' [-Wmissing-prototypes]
kernel/locking/spinlock.c:98:17: warning: no previous prototype for '__raw_write_lock_irq' [-Wmissing-prototypes]
kernel/locking/spinlock.c:103:17: warning: no previous prototype for '__raw_write_lock_bh' [-Wmissing-prototypes]
All __raw_* lock ops are internal functions without external callers.
Hence fix this by making them static.
Note that if CONFIG_GENERIC_LOCKBREAK=y, no lock ops are inlined, as all
of CONFIG_INLINE_*_LOCK* depend on !GENERIC_LOCKBREAK.
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Waiman Long <longman@redhat.com>
Link: https://lkml.kernel.org/r/7201d7fb408375c6c4df541270d787b1b4a32354.1727879348.git.geert+renesas@glider.be
Pull non-MM updates from Andrew Morton:
"Many singleton patches - please see the various changelogs for
details.
Quite a lot of nilfs2 work this time around.
Notable patch series in this pull request are:
- "mul_u64_u64_div_u64: new implementation" by Nicolas Pitre, with
assistance from Uwe Kleine-König. Reimplement mul_u64_u64_div_u64()
to provide (much) more accurate results. The current implementation
was causing Uwe some issues in the PWM drivers.
- "xz: Updates to license, filters, and compression options" from
Lasse Collin. Miscellaneous maintenance and kinor feature work to
the xz decompressor.
- "Fix some GDB command error and add some GDB commands" from
Kuan-Ying Lee. Fixes and enhancements to the gdb scripts.
- "treewide: add missing MODULE_DESCRIPTION() macros" from Jeff
Johnson. Adds lots of MODULE_DESCRIPTIONs, thus fixing lots of
warnings about this.
- "nilfs2: add support for some common ioctls" from Ryusuke Konishi.
Adds various commonly-available ioctls to nilfs2.
- "This series fixes a number of formatting issues in kernel doc
comments" from Ryusuke Konishi does that.
- "nilfs2: prevent unexpected ENOENT propagation" from Ryusuke
Konishi. Fix issues where -ENOENT was being unintentionally and
inappropriately returned to userspace.
- "nilfs2: assorted cleanups" from Huang Xiaojia.
- "nilfs2: fix potential issues with empty b-tree nodes" from Ryusuke
Konishi fixes some issues which can occur on corrupted nilfs2
filesystems.
- "scripts/decode_stacktrace.sh: improve error reporting and
usability" from Luca Ceresoli does those things"
* tag 'mm-nonmm-stable-2024-09-21-07-52' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (103 commits)
list: test: increase coverage of list_test_list_replace*()
list: test: fix tests for list_cut_position()
proc: use __auto_type more
treewide: correct the typo 'retun'
ocfs2: cleanup return value and mlog in ocfs2_global_read_info()
nilfs2: remove duplicate 'unlikely()' usage
nilfs2: fix potential oob read in nilfs_btree_check_delete()
nilfs2: determine empty node blocks as corrupted
nilfs2: fix potential null-ptr-deref in nilfs_btree_insert()
user_namespace: use kmemdup_array() instead of kmemdup() for multiple allocation
tools/mm: rm thp_swap_allocator_test when make clean
squashfs: fix percpu address space issues in decompressor_multi_percpu.c
lib: glob.c: added null check for character class
nilfs2: refactor nilfs_segctor_thread()
nilfs2: use kthread_create and kthread_stop for the log writer thread
nilfs2: remove sc_timer_task
nilfs2: do not repair reserved inode bitmap in nilfs_new_inode()
nilfs2: eliminate the shared counter and spinlock for i_generation
nilfs2: separate inode type information from i_state field
nilfs2: use the BITS_PER_LONG macro
...
Pull scheduler updates from Ingo Molnar:
- Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot
de Oliveira's last major contribution to the kernel:
"SCHED_DEADLINE servers can help fixing starvation issues of low
priority tasks (e.g., SCHED_OTHER) when higher priority tasks
monopolize CPU cycles. Today we have RT Throttling; DEADLINE
servers should be able to replace and improve that."
(Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes, Youssef
Esmat, Huang Shijie)
- Preparatory changes for sched_ext integration:
- Use set_next_task(.first) where required
- Fix up set_next_task() implementations
- Clean up DL server vs. core sched
- Split up put_prev_task_balance()
- Rework pick_next_task()
- Combine the last put_prev_task() and the first set_next_task()
- Rework dl_server
- Add put_prev_task(.next)
(Peter Zijlstra, with a fix by Tejun Heo)
- Complete the EEVDF transition and refine EEVDF scheduling:
- Implement delayed dequeue
- Allow shorter slices to wakeup-preempt
- Use sched_attr::sched_runtime to set request/slice suggestion
- Document the new feature flags
- Remove unused and duplicate-functionality fields
- Simplify & unify pick_next_task_fair()
- Misc debuggability enhancements
(Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann, Valentin
Schneider and Chuyi Zhou)
- Initialize the vruntime of a new task when it is first enqueued,
resulting in significant decrease in latency of newly woken tasks
(Zhang Qiao)
- Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
(K Prateek Nayak, Peter Zijlstra)
- Clean up and clarify the usage of Clean up usage of rt_task()
(Qais Yousef)
- Preempt SCHED_IDLE entities in strict cgroup hierarchies
(Tianchen Ding)
- Clarify the documentation of time units for deadline scheduler
parameters (Christian Loehle)
- Remove the HZ_BW chicken-bit feature flag introduced a year ago,
the original change seems to be working fine (Phil Auld)
- Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie,
Peilin He, Qais Yousefm and Vincent Guittot)
* tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
sched/cpufreq: Use NSEC_PER_MSEC for deadline task
cpufreq/cppc: Use NSEC_PER_MSEC for deadline task
sched/deadline: Clarify nanoseconds in uapi
sched/deadline: Convert schedtool example to chrt
sched/debug: Fix the runnable tasks output
sched: Fix sched_delayed vs sched_core
kernel/sched: Fix util_est accounting for DELAY_DEQUEUE
kthread: Fix task state in kthread worker if being frozen
sched/pelt: Use rq_clock_task() for hw_pressure
sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c
sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule()
sched: Add put_prev_task(.next)
sched: Rework dl_server
sched: Combine the last put_prev_task() and the first set_next_task()
sched: Rework pick_next_task()
sched: Split up put_prev_task_balance()
sched: Clean up DL server vs core sched
sched: Fixup set_next_task() implementations
sched: Use set_next_task(.first) where required
sched/fair: Properly deactivate sched_delayed task upon class change
...
Pull printk updates from Petr Mladek:
"This is the "last" part of the support for the new nbcon consoles.
Where "nbcon" stays for "No Big console lock CONsoles" aka not under
the console_lock.
New callbacks are added to struct console:
- write_thread() for flushing nbcon consoles in task context.
- write_atomic() for flushing nbcon consoles in atomic context,
including NMI.
- con->device_lock() and device_unlock() for taking the driver
specific lock, for example, port->lock.
New printk-specific kthreads are created:
- per-console kthreads which get responsible for flushing normal
priority messages on nbcon consoles.
- thread which gets responsible for flushing normal priority messages
on all consoles when CONFIG_RT enabled.
The new callbacks are called under a special per-console lock which
has already been added back in v6.7. It allows to distinguish three
severities: normal, emergency, and panic. A context with a higher
priority could take over the ownership when it is safe even in the
middle of handling a record. The panic context could do it even when
it is not safe. But it is allowed only for the final desperate flush
before entering the infinite loop.
The new lock helps to flush the messages directly in emergency and
panic contexts. But it is not enough in all situations:
- console_lock() is still need for synchronization against boot
consoles.
- con->device_lock() is need for synchronization against other
operations on the same HW, e.g. serial port speed setting,
non-printk related read/write.
The dependency on con->device_lock() is mutual. Any code taking the
driver specific lock has to acquire the related nbcon console context
as well. For example, see the new uart_port_lock() API. It provides
the necessary synchronization against emergency and panic contexts
where the messages are flushed only under the new per-console lock.
Maybe surprisingly, a quite tricky part is the decision how to flush
the consoles in various situations. It has to take into account:
- message priority: normal, emergency, panic
- scheduling context: task, atomic, deferred_legacy
- registered consoles: boot, legacy, nbcon
- threads are running: early boot, suspend, shutdown, panic
- caller: printk(), pr_flush(), printk_flush_in_panic(),
console_unlock(), console_start(), ...
The primary decision is made in printk_get_console_flush_type(). It
creates a hint what the caller should do:
- flush nbcon consoles directly or via the kthread
- call the legacy loop (console_unlock()) directly or via irq_work
The existing behavior is preserved for the legacy consoles. The only
exception is that they are not longer flushed directly from printk()
in panic() before CPUs are stopped. But this blocking happens only
when at least one nbcon console is registered. The motivation is to
increase a chance to produce the crash dump. They legacy consoles
might create a deadlock in compare with nbcon consoles. The nbcon
console should allow to see the messages even when the crash dump
fails.
There are three possible ways how nbcon consoles are flushed:
- The per-nbcon-console kthread is responsible for flushing messages
added with the normal priority. This is the default mode.
- The legacy loop, aka console_unlock(), is used when there is still
a boot console registered. There is no easy way how to match an
early console driver with a nbcon console driver. And the
console_lock() provides the only reliable serialization at the
moment.
The legacy loop uses either con->write_atomic() or
con->write_thread() callbacks depending on whether it is allowed to
schedule. The atomic variant has to be used from printk().
- In other situations, the messages are flushed directly using
write_atomic() which can be called in any context, including NMI.
It is primary needed during early boot or shutdown, in emergency
situations, and panic.
The emergency priority is used by a code called within
nbcon_cpu_emergency_enter()/exit(). At the moment, it is used in four
situations: WARN(), Oops, lockdep, and RCU stall reports.
Finally, there is no nbcon console at the moment. It means that the
changes should _not_ modify the existing behavior. The only exception
is CONFIG_RT which would force offloading the legacy loop, for normal
priority context, into the dedicated kthread"
* tag 'printk-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/printk/linux: (54 commits)
printk: Avoid false positive lockdep report for legacy printing
printk: nbcon: Assign nice -20 for printing threads
printk: Implement legacy printer kthread for PREEMPT_RT
tty: sysfs: Add nbcon support for 'active'
proc: Add nbcon support for /proc/consoles
proc: consoles: Add notation to c_start/c_stop
printk: nbcon: Show replay message on takeover
printk: Provide helper for message prepending
printk: nbcon: Rely on kthreads for normal operation
printk: nbcon: Use thread callback if in task context for legacy
printk: nbcon: Relocate nbcon_atomic_emit_one()
printk: nbcon: Introduce printer kthreads
printk: nbcon: Init @nbcon_seq to highest possible
printk: nbcon: Add context to usable() and emit()
printk: Flush console on unregister_console()
printk: Fail pr_flush() if before SYSTEM_SCHEDULING
printk: nbcon: Add function for printers to reacquire ownership
printk: nbcon: Use raw_cpu_ptr() instead of open coding
printk: Use the BITS_PER_LONG macro
lockdep: Mark emergency sections in lockdep splats
...
Both is_rwsem_reader_owned() and rwsem_owner() are currently only used when
CONFIG_DEBUG_RWSEMS is defined. This causes a compilation error with clang
when `make W=1` and CONFIG_WERROR=y:
kernel/locking/rwsem.c:187:20: error: unused function 'is_rwsem_reader_owned' [-Werror,-Wunused-function]
187 | static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
| ^~~~~~~~~~~~~~~~~~~~~
kernel/locking/rwsem.c:271:35: error: unused function 'rwsem_owner' [-Werror,-Wunused-function]
271 | static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
| ^~~~~~~~~~~
Fix this by moving these two functions under the CONFIG_DEBUG_RWSEMS define.
Reported-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Tested-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://lore.kernel.org/r/20240909182905.161156-1-longman@redhat.com
Mark emergency sections wherever multiple lines of
lock debugging output are generated. In an emergency
section, every printk() call will attempt to directly
flush to the consoles using the EMERGENCY priority.
Note that debug_show_all_locks() and
lockdep_print_held_locks() rely on their callers to
enter the emergency section. This is because these
functions can also be called in non-emergency
situations (such as sysrq).
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20240820063001.36405-36-john.ogness@linutronix.de
Signed-off-by: Petr Mladek <pmladek@suse.com>
rt_mutex_handle_deadlock() is called with rt_mutex::wait_lock held. In the
good case it returns with the lock held and in the deadlock case it emits a
warning and goes into an endless scheduling loop with the lock held, which
triggers the 'scheduling in atomic' warning.
Unlock rt_mutex::wait_lock in the dead lock case before issuing the warning
and dropping into the schedule for ever loop.
[ tglx: Moved unlock before the WARN(), removed the pointless comment,
massaged changelog, added Fixes tag ]
Fixes: 3d5c9340d1 ("rtmutex: Handle deadlock detection smarter")
Signed-off-by: Roland Xu <mu001999@outlook.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/ME0P300MB063599BEF0743B8FA339C2CECC802@ME0P300MB0635.AUSP300.PROD.OUTLOOK.COM
Pull bcachefs fixes from Kent Overstreet:
"Assorted little stuff:
- lockdep fixup for lockdep_set_notrack_class()
- we can now remove a device when using erasure coding without
deadlocking, though we still hit other issues
- the 'allocator stuck' timeout is now configurable, and messages are
ratelimited. The default timeout has been increased from 10 seconds
to 30"
* tag 'bcachefs-2024-08-08' of git://evilpiepirate.org/bcachefs:
bcachefs: Use bch2_wait_on_allocator() in btree node alloc path
bcachefs: Make allocator stuck timeout configurable, ratelimit messages
bcachefs: Add missing path_traverse() to btree_iter_next_node()
bcachefs: ec should not allocate from ro devs
bcachefs: Improved allocator debugging for ec
bcachefs: Add missing bch2_trans_begin() call
bcachefs: Add a comment for bucket helper types
bcachefs: Don't rely on implicit unsigned -> signed integer conversion
lockdep: Fix lockdep_set_notrack_class() for CONFIG_LOCK_STAT
bcachefs: Fix double free of ca->buckets_nouse
rt_task() checks if a task has RT priority. But depends on your
dictionary, this could mean it belongs to RT class, or is a 'realtime'
task, which includes RT and DL classes.
Since this has caused some confusion already on discussion [1], it
seemed a clean up is due.
I define the usage of rt_task() to be tasks that belong to RT class.
Make sure that it returns true only for RT class and audit the users and
replace the ones required the old behavior with the new realtime_task()
which returns true for RT and DL classes. Introduce similar
realtime_prio() to create similar distinction to rt_prio() and update
the users that required the old behavior to use the new function.
Move MAX_DL_PRIO to prio.h so it can be used in the new definitions.
Document the functions to make it more obvious what is the difference
between them. PI-boosted tasks is a factor that must be taken into
account when choosing which function to use.
Rename task_is_realtime() to realtime_task_policy() as the old name is
confusing against the new realtime_task().
No functional changes were intended.
[1] https://lore.kernel.org/lkml/20240506100509.GL40213@noisy.programming.kicks-ass.net/
Signed-off-by: Qais Yousef <qyousef@layalina.io>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Phil Auld <pauld@redhat.com>
Reviewed-by: "Steven Rostedt (Google)" <rostedt@goodmis.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/20240610192018.1567075-2-qyousef@layalina.io
When lockdep fails while performing the Breadth-first-search operation
due to lack of memory, hint that increasing the value of the config
switch LOCKDEP_CIRCULAR_QUEUE_BITS should fix the warning.
Preface the scary backtrace with the suggestion:
[ 163.849242] Increase LOCKDEP_CIRCULAR_QUEUE_BITS to avoid this warning:
[ 163.849248] ------------[ cut here ]------------
[ 163.849250] lockdep bfs error:-1
[ 163.849263] WARNING: CPU: 24 PID: 2454 at kernel/locking/lockdep.c:2091 print_bfs_bug+0x27/0x40
...
Signed-off-by: Luis Claudio R. Goncalves <lgoncalv@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Waiman Long <longman@redhat.com>
Link: https://lkml.kernel.org/r/Zqkmy0lS-9Sw0M9j@uudg.org