[ Upstream commit 506506cad3 ]
Commit b20d1ba3cf ("arm64: cpufeature: allow for version discrepancy in
PMU implementations") made it possible to run Linux on a machine with PMUs
with different versions without tainting the kernel. The patch relaxed the
restriction only for the ID_AA64DFR0_EL1.PMUVer field, and missed doing the
same for ID_DFR0_EL1.PerfMon , which also reports the PMU version, but for
the AArch32 state.
For example, with Linux running on two clusters with different PMU
versions, the kernel is tainted when bringing up secondaries with the
following message:
[ 0.097027] smp: Bringing up secondary CPUs ...
[..]
[ 0.142805] Detected PIPT I-cache on CPU4
[ 0.142805] CPU features: SANITY CHECK: Unexpected variation in SYS_ID_DFR0_EL1. Boot CPU: 0x00000004011088, CPU4: 0x00000005011088
[ 0.143555] CPU features: Unsupported CPU feature variation detected.
[ 0.143702] GICv3: CPU4: found redistributor 10000 region 0:0x000000002f180000
[ 0.143702] GICv3: CPU4: using allocated LPI pending table @0x00000008800d0000
[ 0.144888] CPU4: Booted secondary processor 0x0000010000 [0x410fd0f0]
The boot CPU implements FEAT_PMUv3p1 (ID_DFR0_EL1.PerfMon, bits 27:24, is
0b0100), but CPU4, part of the other cluster, implements FEAT_PMUv3p4
(ID_DFR0_EL1.PerfMon = 0b0101).
Treat the PerfMon field as FTR_NONSTRICT and FTR_EXACT to pass the sanity
check and to match how PMUVer is treated for the 64bit ID register.
Fixes: b20d1ba3cf ("arm64: cpufeature: allow for version discrepancy in PMU implementations")
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Link: https://lore.kernel.org/r/20220617111332.203061-1-alexandru.elisei@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 20794545c1 ]
This reverts commit e5b8d92189.
Pages mapped in user-space with PROT_MTE have the allocation tags either
zeroed or copied/restored to some user values. In order for the kernel
to access such pages via page_address(), resetting the tag in
page->flags was necessary. This tag resetting was deferred to
set_pte_at() -> mte_sync_page_tags() but it can race with another CPU
reading the flags (via page_to_virt()):
P0 (mte_sync_page_tags): P1 (memcpy from virt_to_page):
Rflags!=0xff
Wflags=0xff
DMB (doesn't help)
Wtags=0
Rtags=0 // fault
Since now the post_alloc_hook() function resets the page->flags tag when
unpoisoning is skipped for user pages (including the __GFP_ZEROTAGS
case), revert the arm64 commit calling page_kasan_tag_reset().
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Peter Collingbourne <pcc@google.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20220610152141.2148929-5-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit af483947d4 ]
emulation_proc_handler() changes table->data for proc_dointvec_minmax
and can generate the following Oops if called concurrently with itself:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
| Internal error: Oops: 96000006 [#1] SMP
| Call trace:
| update_insn_emulation_mode+0xc0/0x148
| emulation_proc_handler+0x64/0xb8
| proc_sys_call_handler+0x9c/0xf8
| proc_sys_write+0x18/0x20
| __vfs_write+0x20/0x48
| vfs_write+0xe4/0x1d0
| ksys_write+0x70/0xf8
| __arm64_sys_write+0x20/0x28
| el0_svc_common.constprop.0+0x7c/0x1c0
| el0_svc_handler+0x2c/0xa0
| el0_svc+0x8/0x200
To fix this issue, keep the table->data as &insn->current_mode and
use container_of() to retrieve the insn pointer. Another mutex is
used to protect against the current_mode update but not for retrieving
insn_emulation as table->data is no longer changing.
Co-developed-by: hewenliang <hewenliang4@huawei.com>
Signed-off-by: hewenliang <hewenliang4@huawei.com>
Signed-off-by: Haibin Zhang <haibinzhang@tencent.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220128090324.2727688-1-hewenliang4@huawei.com
Link: https://lore.kernel.org/r/9A004C03-250B-46C5-BF39-782D7551B00E@tencent.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a625357997 ]
Sometimes it is necessary to use a PLT entry to call an ftrace
trampoline. This is handled by ftrace_make_call() and ftrace_make_nop(),
with each having *almost* identical logic, but this is not handled by
ftrace_modify_call() since its introduction in commit:
3b23e4991f ("arm64: implement ftrace with regs")
Due to this, if we ever were to call ftrace_modify_call() for a callsite
which requires a PLT entry for a trampoline, then either:
a) If the old addr requires a trampoline, ftrace_modify_call() will use
an out-of-range address to generate the 'old' branch instruction.
This will result in warnings from aarch64_insn_gen_branch_imm() and
ftrace_modify_code(), and no instructions will be modified. As
ftrace_modify_call() will return an error, this will result in
subsequent internal ftrace errors.
b) If the old addr does not require a trampoline, but the new addr does,
ftrace_modify_call() will use an out-of-range address to generate the
'new' branch instruction. This will result in warnings from
aarch64_insn_gen_branch_imm(), and ftrace_modify_code() will replace
the 'old' branch with a BRK. This will result in a kernel panic when
this BRK is later executed.
Practically speaking, case (a) is vastly more likely than case (b), and
typically this will result in internal ftrace errors that don't
necessarily affect the rest of the system. This can be demonstrated with
an out-of-tree test module which triggers ftrace_modify_call(), e.g.
| # insmod test_ftrace.ko
| test_ftrace: Function test_function raw=0xffffb3749399201c, callsite=0xffffb37493992024
| branch_imm_common: offset out of range
| branch_imm_common: offset out of range
| ------------[ ftrace bug ]------------
| ftrace failed to modify
| [<ffffb37493992024>] test_function+0x8/0x38 [test_ftrace]
| actual: 1d:00:00:94
| Updating ftrace call site to call a different ftrace function
| ftrace record flags: e0000002
| (2) R
| expected tramp: ffffb374ae42ed54
| ------------[ cut here ]------------
| WARNING: CPU: 0 PID: 165 at kernel/trace/ftrace.c:2085 ftrace_bug+0x280/0x2b0
| Modules linked in: test_ftrace(+)
| CPU: 0 PID: 165 Comm: insmod Not tainted 5.19.0-rc2-00002-g4d9ead8b45ce #13
| Hardware name: linux,dummy-virt (DT)
| pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
| pc : ftrace_bug+0x280/0x2b0
| lr : ftrace_bug+0x280/0x2b0
| sp : ffff80000839ba00
| x29: ffff80000839ba00 x28: 0000000000000000 x27: ffff80000839bcf0
| x26: ffffb37493994180 x25: ffffb374b0991c28 x24: ffffb374b0d70000
| x23: 00000000ffffffea x22: ffffb374afcc33b0 x21: ffffb374b08f9cc8
| x20: ffff572b8462c000 x19: ffffb374b08f9000 x18: ffffffffffffffff
| x17: 6c6c6163202c6331 x16: ffffb374ae5ad110 x15: ffffb374b0d51ee4
| x14: 0000000000000000 x13: 3435646532346561 x12: 3437336266666666
| x11: 203a706d61727420 x10: 6465746365707865 x9 : ffffb374ae5149e8
| x8 : 336266666666203a x7 : 706d617274206465 x6 : 00000000fffff167
| x5 : ffff572bffbc4a08 x4 : 00000000fffff167 x3 : 0000000000000000
| x2 : 0000000000000000 x1 : ffff572b84461e00 x0 : 0000000000000022
| Call trace:
| ftrace_bug+0x280/0x2b0
| ftrace_replace_code+0x98/0xa0
| ftrace_modify_all_code+0xe0/0x144
| arch_ftrace_update_code+0x14/0x20
| ftrace_startup+0xf8/0x1b0
| register_ftrace_function+0x38/0x90
| test_ftrace_init+0xd0/0x1000 [test_ftrace]
| do_one_initcall+0x50/0x2b0
| do_init_module+0x50/0x1f0
| load_module+0x17c8/0x1d64
| __do_sys_finit_module+0xa8/0x100
| __arm64_sys_finit_module+0x2c/0x3c
| invoke_syscall+0x50/0x120
| el0_svc_common.constprop.0+0xdc/0x100
| do_el0_svc+0x3c/0xd0
| el0_svc+0x34/0xb0
| el0t_64_sync_handler+0xbc/0x140
| el0t_64_sync+0x18c/0x190
| ---[ end trace 0000000000000000 ]---
We can solve this by consistently determining whether to use a PLT entry
for an address.
Note that since (the earlier) commit:
f1a54ae9af ("arm64: module/ftrace: intialize PLT at load time")
... we can consistently determine the PLT address that a given callsite
will use, and therefore ftrace_make_nop() does not need to skip
validation when a PLT is in use.
This patch factors the existing logic out of ftrace_make_call() and
ftrace_make_nop() into a common ftrace_find_callable_addr() helper
function, which is used by ftrace_make_call(), ftrace_make_nop(), and
ftrace_modify_call(). In ftrace_make_nop() the patching is consistently
validated by ftrace_modify_code() as we can always determine what the
old instruction should have been.
Fixes: 3b23e4991f ("arm64: implement ftrace with regs")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Will Deacon <will@kernel.org>
Tested-by: "Ivan T. Ivanov" <iivanov@suse.de>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220614080944.1349146-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3eefdf9d1e ]
The branch range checks in ftrace_make_call() and ftrace_make_nop() are
incorrect, erroneously permitting a forwards branch of 128M and
erroneously rejecting a backwards branch of 128M.
This is because both functions calculate the offset backwards,
calculating the offset *from* the target *to* the branch, rather than
the other way around as the later comparisons expect.
If an out-of-range branch were erroeously permitted, this would later be
rejected by aarch64_insn_gen_branch_imm() as branch_imm_common() checks
the bounds correctly, resulting in warnings and the placement of a BRK
instruction. Note that this can only happen for a forwards branch of
exactly 128M, and so the caller would need to be exactly 128M bytes
below the relevant ftrace trampoline.
If an in-range branch were erroeously rejected, then:
* For modules when CONFIG_ARM64_MODULE_PLTS=y, this would result in the
use of a PLT entry, which is benign.
Note that this is the common case, as this is selected by
CONFIG_RANDOMIZE_BASE (and therefore RANDOMIZE_MODULE_REGION_FULL),
which distributions typically seelct. This is also selected by
CONFIG_ARM64_ERRATUM_843419.
* For modules when CONFIG_ARM64_MODULE_PLTS=n, this would result in
internal ftrace failures.
* For core kernel text, this would result in internal ftrace failues.
Note that for this to happen, the kernel text would need to be at
least 128M bytes in size, and typical configurations are smaller tha
this.
Fix this by calculating the offset *from* the branch *to* the target in
both functions.
Fixes: f8af0b364e ("arm64: ftrace: don't validate branch via PLT in ftrace_make_nop()")
Fixes: e71a4e1beb ("arm64: ftrace: add support for far branches to dynamic ftrace")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Will Deacon <will@kernel.org>
Tested-by: "Ivan T. Ivanov" <iivanov@suse.de>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220614080944.1349146-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 78ed93d72d ]
With SIGTRAP on perf events, we have encountered termination of
processes due to user space attempting to block delivery of SIGTRAP.
Consider this case:
<set up SIGTRAP on a perf event>
...
sigset_t s;
sigemptyset(&s);
sigaddset(&s, SIGTRAP | <and others>);
sigprocmask(SIG_BLOCK, &s, ...);
...
<perf event triggers>
When the perf event triggers, while SIGTRAP is blocked, force_sig_perf()
will force the signal, but revert back to the default handler, thus
terminating the task.
This makes sense for error conditions, but not so much for explicitly
requested monitoring. However, the expectation is still that signals
generated by perf events are synchronous, which will no longer be the
case if the signal is blocked and delivered later.
To give user space the ability to clearly distinguish synchronous from
asynchronous signals, introduce siginfo_t::si_perf_flags and
TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is
required in future).
The resolution to the problem is then to (a) no longer force the signal
(avoiding the terminations), but (b) tell user space via si_perf_flags
if the signal was synchronous or not, so that such signals can be
handled differently (e.g. let user space decide to ignore or consider
the data imprecise).
The alternative of making the kernel ignore SIGTRAP on perf events if
the signal is blocked may work for some usecases, but likely causes
issues in others that then have to revert back to interception of
sigprocmask() (which we want to avoid). [ A concrete example: when using
breakpoint perf events to track data-flow, in a region of code where
signals are blocked, data-flow can no longer be tracked accurately.
When a relevant asynchronous signal is received after unblocking the
signal, the data-flow tracking logic needs to know its state is
imprecise. ]
Fixes: 97ba62b278 ("perf: Add support for SIGTRAP on perf events")
Reported-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Link: https://lore.kernel.org/r/20220404111204.935357-1-elver@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 3fed9e5514 ]
If a compat process tries to execute an unknown system call above the
__ARM_NR_COMPAT_END number, the kernel sends a SIGILL signal to the
offending process. Information about the error is printed to dmesg in
compat_arm_syscall() -> arm64_notify_die() -> arm64_force_sig_fault() ->
arm64_show_signal().
arm64_show_signal() interprets a non-zero value for
current->thread.fault_code as an exception syndrome and displays the
message associated with the ESR_ELx.EC field (bits 31:26).
current->thread.fault_code is set in compat_arm_syscall() ->
arm64_notify_die() with the bad syscall number instead of a valid ESR_ELx
value. This means that the ESR_ELx.EC field has the value that the user set
for the syscall number and the kernel can end up printing bogus exception
messages*. For example, for the syscall number 0x68000000, which evaluates
to ESR_ELx.EC value of 0x1A (ESR_ELx_EC_FPAC) the kernel prints this error:
[ 18.349161] syscall[300]: unhandled exception: ERET/ERETAA/ERETAB, ESR 0x68000000, Oops - bad compat syscall(2) in syscall[10000+50000]
[ 18.350639] CPU: 2 PID: 300 Comm: syscall Not tainted 5.18.0-rc1 #79
[ 18.351249] Hardware name: Pine64 RockPro64 v2.0 (DT)
[..]
which is misleading, as the bad compat syscall has nothing to do with
pointer authentication.
Stop arm64_show_signal() from printing exception syndrome information by
having compat_arm_syscall() set the ESR_ELx value to 0, as it has no
meaning for an invalid system call number. The example above now becomes:
[ 19.935275] syscall[301]: unhandled exception: Oops - bad compat syscall(2) in syscall[10000+50000]
[ 19.936124] CPU: 1 PID: 301 Comm: syscall Not tainted 5.18.0-rc1-00005-g7e08006d4102 #80
[ 19.936894] Hardware name: Pine64 RockPro64 v2.0 (DT)
[..]
which although shows less information because the syscall number,
wrongfully advertised as the ESR value, is missing, it is better than
showing plainly wrong information. The syscall number can be easily
obtained with strace.
*A 32-bit value above or equal to 0x8000_0000 is interpreted as a negative
integer in compat_arm_syscal() and the condition scno < __ARM_NR_COMPAT_END
evaluates to true; the syscall will exit to userspace in this case with the
ENOSYS error code instead of arm64_notify_die() being called.
Signed-off-by: Alexandru Elisei <alexandru.elisei@arm.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220425114444.368693-3-alexandru.elisei@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 51f559d665 ]
Add KRYO4XX gold/big cores to the list of CPUs that need the
repeat TLBI workaround. Apply this to the affected
KRYO4XX cores (rcpe to rfpe).
The variant and revision bits are implementation defined and are
different from the their Cortex CPU counterparts on which they are
based on, i.e., (r0p0 to r3p0) is equivalent to (rcpe to rfpe).
Signed-off-by: Shreyas K K <quic_shrekk@quicinc.com>
Reviewed-by: Sai Prakash Ranjan <quic_saipraka@quicinc.com>
Link: https://lore.kernel.org/r/20220512110134.12179-1-quic_shrekk@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit a2c0b0fbe0 ]
The alternatives code must be `noinstr` such that it does not patch itself,
as the cache invalidation is only performed after all the alternatives have
been applied.
Mark patch_alternative() as `noinstr`. Mark branch_insn_requires_update()
and get_alt_insn() with `__always_inline` since they are both only called
through patch_alternative().
Booting a kernel in QEMU TCG with KCSAN=y and ARM64_USE_LSE_ATOMICS=y caused
a boot hang:
[ 0.241121] CPU: All CPU(s) started at EL2
The alternatives code was patching the atomics in __tsan_read4() from LL/SC
atomics to LSE atomics.
The following fragment is using LL/SC atomics in the .text section:
| <__tsan_unaligned_read4+304>: ldxr x6, [x2]
| <__tsan_unaligned_read4+308>: add x6, x6, x5
| <__tsan_unaligned_read4+312>: stxr w7, x6, [x2]
| <__tsan_unaligned_read4+316>: cbnz w7, <__tsan_unaligned_read4+304>
This LL/SC atomic sequence was to be replaced with LSE atomics. However since
the alternatives code was instrumentable, __tsan_read4() was being called after
only the first instruction was replaced, which led to the following code in memory:
| <__tsan_unaligned_read4+304>: ldadd x5, x6, [x2]
| <__tsan_unaligned_read4+308>: add x6, x6, x5
| <__tsan_unaligned_read4+312>: stxr w7, x6, [x2]
| <__tsan_unaligned_read4+316>: cbnz w7, <__tsan_unaligned_read4+304>
This caused an infinite loop as the `stxr` instruction never completed successfully,
so `w7` was always 0.
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20220405104733.11476-1-joey.gouly@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 01f6c7338c upstream.
Currently the first thing checked is whether the PCSI cpu_suspend function
has been initialized.
Another change will be overloading `acpi_processor_ffh_lpi_probe` and
calling it sooner. So make the `has_lpi` check the first thing checked
to prepare for that change.
Reviewed-by: Sudeep Holla <sudeep.holla@arm.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 5524cbb1bf ]
Arm64 systems rely on store_cpu_topology() to call update_siblings_masks()
to transfer the toplogy to the various cpu masks. This needs to be done
before the call to notify_cpu_starting() which tells the scheduler about
each cpu found, otherwise the core scheduling data structures are setup
in a way that does not match the actual topology.
With smt_mask not setup correctly we bail on `cpumask_weight(smt_mask) == 1`
for !leaders in:
notify_cpu_starting()
cpuhp_invoke_callback_range()
sched_cpu_starting()
sched_core_cpu_starting()
which leads to rq->core not being correctly set for !leader-rq's.
Without this change stress-ng (which enables core scheduling in its prctl
tests in newer versions -- i.e. with PR_SCHED_CORE support) causes a warning
and then a crash (trimmed for legibility):
[ 1853.805168] ------------[ cut here ]------------
[ 1853.809784] task_rq(b)->core != rq->core
[ 1853.809792] WARNING: CPU: 117 PID: 0 at kernel/sched/fair.c:11102 cfs_prio_less+0x1b4/0x1c4
...
[ 1854.015210] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
...
[ 1854.231256] Call trace:
[ 1854.233689] pick_next_task+0x3dc/0x81c
[ 1854.237512] __schedule+0x10c/0x4cc
[ 1854.240988] schedule_idle+0x34/0x54
Fixes: 9edeaea1bc ("sched: Core-wide rq->lock")
Signed-off-by: Phil Auld <pauld@redhat.com>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220331153926.25742-1-pauld@redhat.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 614c0b9fee ]
We may call arm64_apply_bp_hardening() early during entry (e.g. in
el0_ia()) before it is safe to run instrumented code. Unfortunately this
may result in running instrumented code in two cases:
* The hardening callbacks called by arm64_apply_bp_hardening() are not
marked as `noinstr`, and have been observed to be instrumented when
compiled with either GCC or LLVM.
* Since arm64_apply_bp_hardening() itself is only marked as `inline`
rather than `__always_inline`, it is possible that the compiler
decides to place it out-of-line, whereupon it may be instrumented.
For example, with defconfig built with clang 13.0.0,
call_hvc_arch_workaround_1() is compiled as:
| <call_hvc_arch_workaround_1>:
| d503233f paciasp
| f81f0ffe str x30, [sp, #-16]!
| 320183e0 mov w0, #0x80008000
| d503201f nop
| d4000002 hvc #0x0
| f84107fe ldr x30, [sp], #16
| d50323bf autiasp
| d65f03c0 ret
... but when CONFIG_FTRACE=y and CONFIG_KCOV=y this is compiled as:
| <call_hvc_arch_workaround_1>:
| d503245f bti c
| d503201f nop
| d503201f nop
| d503233f paciasp
| a9bf7bfd stp x29, x30, [sp, #-16]!
| 910003fd mov x29, sp
| 94000000 bl 0 <__sanitizer_cov_trace_pc>
| 320183e0 mov w0, #0x80008000
| d503201f nop
| d4000002 hvc #0x0
| a8c17bfd ldp x29, x30, [sp], #16
| d50323bf autiasp
| d65f03c0 ret
... with a patchable function entry registered with ftrace, and a direct
call to __sanitizer_cov_trace_pc(). Neither of these are safe early
during entry sequences.
This patch avoids the unsafe instrumentation by marking
arm64_apply_bp_hardening() as `__always_inline` and by marking the
hardening functions as `noinstr`. This avoids the potential for
instrumentation, and causes clang to consistently generate the function
as with the defconfig sample.
Note: in the defconfig compilation, when CONFIG_SVE=y, x30 is spilled to
the stack without being placed in a frame record, which will result in a
missing entry if call_hvc_arch_workaround_1() is backtraced. Similar is
true of qcom_link_stack_sanitisation(), where inline asm spills the LR
to a GPR prior to corrupting it. This is not a significant issue
presently as we will only backtrace here if an exception is taken, and
in such cases we may omit entries for other reasons today.
The relevant hardening functions were introduced in commits:
ec82b567a7 ("arm64: Implement branch predictor hardening for Falkor")
b092201e00 ("arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support")
... and these were subsequently moved in commit:
d4647f0a2a ("arm64: Rewrite Spectre-v2 mitigation code")
The arm64_apply_bp_hardening() function was introduced in commit:
0f15adbb28 ("arm64: Add skeleton to harden the branch predictor against aliasing attacks")
... and was subsequently moved and reworked in commit:
6279017e80 ("KVM: arm64: Move BP hardening helpers into spectre.h")
Fixes: ec82b567a7 ("arm64: Implement branch predictor hardening for Falkor")
Fixes: b092201e00 ("arm64: Add ARM_SMCCC_ARCH_WORKAROUND_1 BP hardening support")
Fixes: d4647f0a2a ("arm64: Rewrite Spectre-v2 mitigation code")
Fixes: 0f15adbb28 ("arm64: Add skeleton to harden the branch predictor against aliasing attacks")
Fixes: 6279017e80 ("KVM: arm64: Move BP hardening helpers into spectre.h")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Acked-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20220224181028.512873-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 0a32c88ddb upstream.
Commit 6d502b6ba1 ("arm64: signal: nofpsimd: Handle fp/simd context for
signal frames") introduced saving the fp/simd context for signal handling
only when support is available. But setup_sigframe_layout() always
reserves memory for fp/simd context. The additional memory is not touched
because preserve_fpsimd_context() is not called and thus the magic is
invalid.
This may lead to an error when parse_user_sigframe() checks the fp/simd
area and does not find a valid magic number.
Signed-off-by: David Engraf <david.engraf@sysgo.com>
Reviwed-by: Mark Brown <broonie@kernel.org>
Fixes: 6d502b6ba1 ("arm64: signal: nofpsimd: Handle fp/simd context for signal frames")
Cc: <stable@vger.kernel.org> # 5.6.x
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20220225104008.820289-1-david.engraf@sysgo.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 58c9a5060c upstream.
The mitigations for Spectre-BHB are only applied when an exception is
taken from user-space. The mitigation status is reported via the spectre_v2
sysfs vulnerabilities file.
When unprivileged eBPF is enabled the mitigation in the exception vectors
can be avoided by an eBPF program.
When unprivileged eBPF is enabled, print a warning and report vulnerable
via the sysfs vulnerabilities file.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 228a26b912 upstream.
Future CPUs may implement a clearbhb instruction that is sufficient
to mitigate SpectreBHB. CPUs that implement this instruction, but
not CSV2.3 must be affected by Spectre-BHB.
Add support to use this instruction as the BHB mitigation on CPUs
that support it. The instruction is in the hint space, so it will
be treated by a NOP as older CPUs.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 558c303c97 upstream.
Speculation attacks against some high-performance processors can
make use of branch history to influence future speculation.
When taking an exception from user-space, a sequence of branches
or a firmware call overwrites or invalidates the branch history.
The sequence of branches is added to the vectors, and should appear
before the first indirect branch. For systems using KPTI the sequence
is added to the kpti trampoline where it has a free register as the exit
from the trampoline is via a 'ret'. For systems not using KPTI, the same
register tricks are used to free up a register in the vectors.
For the firmware call, arch-workaround-3 clobbers 4 registers, so
there is no choice but to save them to the EL1 stack. This only happens
for entry from EL0, so if we take an exception due to the stack access,
it will not become re-entrant.
For KVM, the existing branch-predictor-hardening vectors are used.
When a spectre version of these vectors is in use, the firmware call
is sufficient to mitigate against Spectre-BHB. For the non-spectre
versions, the sequence of branches is added to the indirect vector.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit dee435be76 upstream.
Speculation attacks against some high-performance processors can
make use of branch history to influence future speculation as part of
a spectre-v2 attack. This is not mitigated by CSV2, meaning CPUs that
previously reported 'Not affected' are now moderately mitigated by CSV2.
Update the value in /sys/devices/system/cpu/vulnerabilities/spectre_v2
to also show the state of the BHB mitigation.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bd09128d16 upstream.
The Spectre-BHB workaround adds a firmware call to the vectors. This
is needed on some CPUs, but not others. To avoid the unaffected CPU in
a big/little pair from making the firmware call, create per cpu vectors.
The per-cpu vectors only apply when returning from EL0.
Systems using KPTI can use the canonical 'full-fat' vectors directly at
EL1, the trampoline exit code will switch to this_cpu_vector on exit to
EL0. Systems not using KPTI should always use this_cpu_vector.
this_cpu_vector will point at a vector in tramp_vecs or
__bp_harden_el1_vectors, depending on whether KPTI is in use.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b28a8eebe8 upstream.
The trampoline code needs to use the address of symbols in the wider
kernel, e.g. vectors. PC-relative addressing wouldn't work as the
trampoline code doesn't run at the address the linker expected.
tramp_ventry uses a literal pool, unless CONFIG_RANDOMIZE_BASE is
set, in which case it uses the data page as a literal pool because
the data page can be unmapped when running in user-space, which is
required for CPUs vulnerable to meltdown.
Pull this logic out as a macro, instead of adding a third copy
of it.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ba2689234b upstream.
Some CPUs affected by Spectre-BHB need a sequence of branches, or a
firmware call to be run before any indirect branch. This needs to go
in the vectors. No CPU needs both.
While this can be patched in, it would run on all CPUs as there is a
single set of vectors. If only one part of a big/little combination is
affected, the unaffected CPUs have to run the mitigation too.
Create extra vectors that include the sequence. Subsequent patches will
allow affected CPUs to select this set of vectors. Later patches will
modify the loop count to match what the CPU requires.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit aff65393fa upstream.
kpti is an optional feature, for systems not using kpti a set of
vectors for the spectre-bhb mitigations is needed.
Add another set of vectors, __bp_harden_el1_vectors, that will be
used if a mitigation is needed and kpti is not in use.
The EL1 ventries are repeated verbatim as there is no additional
work needed for entry from EL1.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a9c406e646 upstream.
Adding a second set of vectors to .entry.tramp.text will make it
larger than a single 4K page.
Allow the trampoline text to occupy up to three pages by adding two
more fixmap slots. Previous changes to tramp_valias allowed it to reach
beyond a single page.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c47e4d04ba upstream.
Spectre-BHB needs to add sequences to the vectors. Having one global
set of vectors is a problem for big/little systems where the sequence
is costly on cpus that are not vulnerable.
Making the vectors per-cpu in the style of KVM's bh_harden_hyp_vecs
requires the vectors to be generated by macros.
Make the kpti re-mapping of the kernel optional, so the macros can be
used without kpti.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 13d7a08352 upstream.
The macros for building the kpti trampoline are all behind
CONFIG_UNMAP_KERNEL_AT_EL0, and in a region that outputs to the
.entry.tramp.text section.
Move the macros out so they can be used to generate other kinds of
trampoline. Only the symbols need to be guarded by
CONFIG_UNMAP_KERNEL_AT_EL0 and appear in the .entry.tramp.text section.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ed50da7764 upstream.
The tramp_ventry macro uses tramp_vectors as the address of the vectors
when calculating which ventry in the 'full fat' vectors to branch to.
While there is one set of tramp_vectors, this will be true.
Adding multiple sets of vectors will break this assumption.
Move the generation of the vectors to a macro, and pass the start
of the vectors as an argument to tramp_ventry.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6c5bf79b69 upstream.
Systems using kpti enter and exit the kernel through a trampoline mapping
that is always mapped, even when the kernel is not. tramp_valias is a macro
to find the address of a symbol in the trampoline mapping.
Adding extra sets of vectors will expand the size of the entry.tramp.text
section to beyond 4K. tramp_valias will be unable to generate addresses
for symbols beyond 4K as it uses the 12 bit immediate of the add
instruction.
As there are now two registers available when tramp_alias is called,
use the extra register to avoid the 4K limit of the 12 bit immediate.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit c091fb6ae0 upstream.
The trampoline code has a data page that holds the address of the vectors,
which is unmapped when running in user-space. This ensures that with
CONFIG_RANDOMIZE_BASE, the randomised address of the kernel can't be
discovered until after the kernel has been mapped.
If the trampoline text page is extended to include multiple sets of
vectors, it will be larger than a single page, making it tricky to
find the data page without knowing the size of the trampoline text
pages, which will vary with PAGE_SIZE.
Move the data page to appear before the text page. This allows the
data page to be found without knowing the size of the trampoline text
pages. 'tramp_vectors' is used to refer to the beginning of the
.entry.tramp.text section, do that explicitly.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 03aff3a77a upstream.
Kpti stashes x30 in far_el1 while it uses x30 for all its work.
Making the vectors a per-cpu data structure will require a second
register.
Allow tramp_exit two registers before it unmaps the kernel, by
leaving x30 on the stack, and stashing x29 in far_el1.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit d739da1694 upstream.
Subsequent patches will add additional sets of vectors that use
the same tricks as the kpti vectors to reach the full-fat vectors.
The full-fat vectors contain some cleanup for kpti that is patched
in by alternatives when kpti is in use. Once there are additional
vectors, the cleanup will be needed in more cases.
But on big/little systems, the cleanup would be harmful if no
trampoline vector were in use. Instead of forcing CPUs that don't
need a trampoline vector to use one, make the trampoline cleanup
optional.
Entry at the top of the vectors will skip the cleanup. The trampoline
vectors can then skip the first instruction, triggering the cleanup
to run.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1b33d4860d upstream.
The spectre-v4 sequence includes an SMC from the assembly entry code.
spectre_v4_patch_fw_mitigation_conduit is the patching callback that
generates an HVC or SMC depending on the SMCCC conduit type.
As this isn't specific to spectre-v4, rename it
smccc_patch_fw_mitigation_conduit so it can be re-used.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit b89ddf4cca upstream.
Commit 91fc957c9b ("arm64/bpf: don't allocate BPF JIT programs in module
memory") restricts BPF JIT program allocation to a 128MB region to ensure
BPF programs are still in branching range of each other. However this
restriction should not apply to the aarch64 JIT, since BPF_JMP | BPF_CALL
are implemented as a 64-bit move into a register and then a BLR instruction -
which has the effect of being able to call anything without proximity
limitation.
The practical reason to relax this restriction on JIT memory is that 128MB of
JIT memory can be quickly exhausted, especially where PAGE_SIZE is 64KB - one
page is needed per program. In cases where seccomp filters are applied to
multiple VMs on VM launch - such filters are classic BPF but converted to
BPF - this can severely limit the number of VMs that can be launched. In a
world where we support BPF JIT always on, turning off the JIT isn't always an
option either.
Fixes: 91fc957c9b ("arm64/bpf: don't allocate BPF JIT programs in module memory")
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Russell King <russell.king@oracle.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/1636131046-5982-2-git-send-email-alan.maguire@oracle.com
Reviewed-by: Tom Saeger <tom.saeger@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 38e0257e0e upstream.
The erratum 1418040 workaround enables CNTVCT_EL1 access trapping in EL0
when executing compat threads. The workaround is applied when switching
between tasks, but the need for the workaround could also change at an
exec(), when a non-compat task execs a compat binary or vice versa. Apply
the workaround in arch_setup_new_exec().
This leaves a small window of time between SET_PERSONALITY and
arch_setup_new_exec where preemption could occur and confuse the old
workaround logic that compares TIF_32BIT between prev and next. Instead, we
can just read cntkctl to make sure it's in the state that the next task
needs. I measured cntkctl read time to be about the same as a mov from a
general-purpose register on N1. Update the workaround logic to examine the
current value of cntkctl instead of the previous task's compat state.
Fixes: d49f7d7376 ("arm64: Move handling of erratum 1418040 into C code")
Cc: <stable@vger.kernel.org> # 5.9.x
Signed-off-by: D Scott Phillips <scott@os.amperecomputing.com>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211220234114.3926-1-scott@os.amperecomputing.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit ff083a2d97 upstream.
Protect perf_guest_cbs with RCU to fix multiple possible errors. Luckily,
all paths that read perf_guest_cbs already require RCU protection, e.g. to
protect the callback chains, so only the direct perf_guest_cbs touchpoints
need to be modified.
Bug #1 is a simple lack of WRITE_ONCE/READ_ONCE behavior to ensure
perf_guest_cbs isn't reloaded between a !NULL check and a dereference.
Fixed via the READ_ONCE() in rcu_dereference().
Bug #2 is that on weakly-ordered architectures, updates to the callbacks
themselves are not guaranteed to be visible before the pointer is made
visible to readers. Fixed by the smp_store_release() in
rcu_assign_pointer() when the new pointer is non-NULL.
Bug #3 is that, because the callbacks are global, it's possible for
readers to run in parallel with an unregisters, and thus a module
implementing the callbacks can be unloaded while readers are in flight,
resulting in a use-after-free. Fixed by a synchronize_rcu() call when
unregistering callbacks.
Bug #1 escaped notice because it's extremely unlikely a compiler will
reload perf_guest_cbs in this sequence. perf_guest_cbs does get reloaded
for future derefs, e.g. for ->is_user_mode(), but the ->is_in_guest()
guard all but guarantees the consumer will win the race, e.g. to nullify
perf_guest_cbs, KVM has to completely exit the guest and teardown down
all VMs before KVM start its module unload / unregister sequence. This
also makes it all but impossible to encounter bug #3.
Bug #2 has not been a problem because all architectures that register
callbacks are strongly ordered and/or have a static set of callbacks.
But with help, unloading kvm_intel can trigger bug #1 e.g. wrapping
perf_guest_cbs with READ_ONCE in perf_misc_flags() while spamming
kvm_intel module load/unload leads to:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 6 PID: 1825 Comm: stress Not tainted 5.14.0-rc2+ #459
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:perf_misc_flags+0x1c/0x70
Call Trace:
perf_prepare_sample+0x53/0x6b0
perf_event_output_forward+0x67/0x160
__perf_event_overflow+0x52/0xf0
handle_pmi_common+0x207/0x300
intel_pmu_handle_irq+0xcf/0x410
perf_event_nmi_handler+0x28/0x50
nmi_handle+0xc7/0x260
default_do_nmi+0x6b/0x170
exc_nmi+0x103/0x130
asm_exc_nmi+0x76/0xbf
Fixes: 39447b386c ("perf: Enhance perf to allow for guest statistic collection from host")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20211111020738.2512932-2-seanjc@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 3e6f8d1fa1 upstream.
Similar to
commit 231ad7f409 ("Makefile: infer --target from ARCH for CC=clang")
There really is no point in setting --target based on
$CROSS_COMPILE_COMPAT for clang when the integrated assembler is being
used, since
commit ef94340583 ("arm64: vdso32: drop -no-integrated-as flag").
Allows COMPAT_VDSO to be selected without setting $CROSS_COMPILE_COMPAT
when using clang and lld together.
Before:
$ ARCH=arm64 CROSS_COMPILE_COMPAT=arm-linux-gnueabi- make -j72 LLVM=1 defconfig
$ grep CONFIG_COMPAT_VDSO .config
CONFIG_COMPAT_VDSO=y
$ ARCH=arm64 make -j72 LLVM=1 defconfig
$ grep CONFIG_COMPAT_VDSO .config
$
After:
$ ARCH=arm64 CROSS_COMPILE_COMPAT=arm-linux-gnueabi- make -j72 LLVM=1 defconfig
$ grep CONFIG_COMPAT_VDSO .config
CONFIG_COMPAT_VDSO=y
$ ARCH=arm64 make -j72 LLVM=1 defconfig
$ grep CONFIG_COMPAT_VDSO .config
CONFIG_COMPAT_VDSO=y
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Suggested-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20211019223646.1146945-5-ndesaulniers@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9c5d89bc10 ]
Since commit ac10be5cdb ("arm64: Use common
of_kexec_alloc_and_setup_fdt()"), smatch reports the following warning:
arch/arm64/kernel/machine_kexec_file.c:152 load_other_segments()
warn: missing error code 'ret'
Return code is not set to an error code in load_other_segments() when
of_kexec_alloc_and_setup_fdt() call returns a NULL dtb. This results
in status success (return code set to 0) being returned from
load_other_segments().
Set return code to -EINVAL if of_kexec_alloc_and_setup_fdt() returns
NULL dtb.
Signed-off-by: Lakshmi Ramasubramanian <nramas@linux.microsoft.com>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Fixes: ac10be5cdb ("arm64: Use common of_kexec_alloc_and_setup_fdt()")
Link: https://lore.kernel.org/r/20211210010121.101823-1-nramas@linux.microsoft.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 35b6b28e69 upstream.
When branch target identifiers are in use, code reachable via an
indirect branch requires a BTI landing pad at the branch target site.
When building FTRACE_WITH_REGS atop patchable-function-entry, we miss
BTIs at the start start of the `ftrace_caller` and `ftrace_regs_caller`
trampolines, and when these are called from a module via a PLT (which
will use a `BR X16`), we will encounter a BTI failure, e.g.
| # insmod lkdtm.ko
| lkdtm: No crash points registered, enable through debugfs
| # echo function_graph > /sys/kernel/debug/tracing/current_tracer
| # cat /sys/kernel/debug/provoke-crash/DIRECT
| Unhandled 64-bit el1h sync exception on CPU0, ESR 0x34000001 -- BTI
| CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3
| Hardware name: linux,dummy-virt (DT)
| pstate: 60400405 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=jc)
| pc : ftrace_caller+0x0/0x3c
| lr : lkdtm_debugfs_open+0xc/0x20 [lkdtm]
| sp : ffff800012e43b00
| x29: ffff800012e43b00 x28: 0000000000000000 x27: ffff800012e43c88
| x26: 0000000000000000 x25: 0000000000000000 x24: ffff0000c171f200
| x23: ffff0000c27b1e00 x22: ffff0000c2265240 x21: ffff0000c23c8c30
| x20: ffff8000090ba380 x19: 0000000000000000 x18: 0000000000000000
| x17: 0000000000000000 x16: ffff80001002bb4c x15: 0000000000000000
| x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000900ff0
| x11: ffff0000c4166310 x10: ffff800012e43b00 x9 : ffff8000104f2384
| x8 : 0000000000000001 x7 : 0000000000000000 x6 : 000000000000003f
| x5 : 0000000000000040 x4 : ffff800012e43af0 x3 : 0000000000000001
| x2 : ffff8000090b0000 x1 : ffff0000c171f200 x0 : ffff0000c23c8c30
| Kernel panic - not syncing: Unhandled exception
| CPU: 0 PID: 174 Comm: cat Not tainted 5.16.0-rc2-dirty #3
| Hardware name: linux,dummy-virt (DT)
| Call trace:
| dump_backtrace+0x0/0x1a4
| show_stack+0x24/0x30
| dump_stack_lvl+0x68/0x84
| dump_stack+0x1c/0x38
| panic+0x168/0x360
| arm64_exit_nmi.isra.0+0x0/0x80
| el1h_64_sync_handler+0x68/0xd4
| el1h_64_sync+0x78/0x7c
| ftrace_caller+0x0/0x3c
| do_dentry_open+0x134/0x3b0
| vfs_open+0x38/0x44
| path_openat+0x89c/0xe40
| do_filp_open+0x8c/0x13c
| do_sys_openat2+0xbc/0x174
| __arm64_sys_openat+0x6c/0xbc
| invoke_syscall+0x50/0x120
| el0_svc_common.constprop.0+0xdc/0x100
| do_el0_svc+0x84/0xa0
| el0_svc+0x28/0x80
| el0t_64_sync_handler+0xa8/0x130
| el0t_64_sync+0x1a0/0x1a4
| SMP: stopping secondary CPUs
| Kernel Offset: disabled
| CPU features: 0x0,00000f42,da660c5f
| Memory Limit: none
| ---[ end Kernel panic - not syncing: Unhandled exception ]---
Fix this by adding the required `BTI C`, as we only require these to be
reachable via BL for direct calls or BR X16/X17 for PLTs. For now, these
are open-coded in the function prologue, matching the style of the
`__hwasan_tag_mismatch` trampoline.
In future we may wish to consider adding a new SYM_CODE_START_*()
variant which has an implicit BTI.
When ftrace is built atop mcount, the trampolines are marked with
SYM_FUNC_START(), and so get an implicit BTI. We may need to change
these over to SYM_CODE_START() in future for RELIABLE_STACKTRACE, in
case we need to apply special care aroud the return address being
rewritten.
Fixes: 97fed779f2 ("arm64: bti: Provide Kconfig for kernel mode BTI")
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20211129135709.2274019-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 9dc232a8ab ]
The id argument of ARM64_FTR_REG_OVERRIDE() is used for two purposes:
one as the system register encoding (used for the sys_id field of
__ftr_reg_entry), and the other as the register name (stringified
and used for the name field of arm64_ftr_reg), which is debug
information. The id argument is supposed to be a macro that
indicates an encoding of the register (eg. SYS_ID_AA64PFR0_EL1, etc).
ARM64_FTR_REG(), which also has the same id argument,
uses ARM64_FTR_REG_OVERRIDE() and passes the id to the macro.
Since the id argument is completely macro-expanded before it is
substituted into a macro body of ARM64_FTR_REG_OVERRIDE(),
the stringified id in the body of ARM64_FTR_REG_OVERRIDE is not
a human-readable register name, but a string of numeric bitwise
operations.
Fix this so that human-readable register names are available as
debug information.
Fixes: 8f266a5d87 ("arm64: cpufeature: Add global feature override facility")
Signed-off-by: Reiji Watanabe <reijiw@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211101045421.2215822-1-reijiw@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>