Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
Pull UML updates from Richard Weinberger:
- KASAN support for x86_64
- noreboot command line option, just like qemu's -no-reboot
- Various fixes and cleanups
* tag 'for-linus-5.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rw/uml:
um: include sys/types.h for size_t
um: Replace to_phys() and to_virt() with less generic function names
um: Add missing apply_returns()
um: add "noreboot" command line option for PANIC_TIMEOUT=-1 setups
um: include linux/stddef.h for __always_inline
UML: add support for KASAN under x86_64
mm: Add PAGE_ALIGN_DOWN macro
um: random: Don't initialise hwrng struct with zero
um: remove unused mm_copy_segments
um: remove unused variable
um: Remove straying parenthesis
um: x86: print RIP with symbol
arch: um: Fix build for statically linked UML w/ constructors
x86/um: Kconfig: Fix indentation
um/drivers: Kconfig: Fix indentation
um: Kconfig: Fix indentation
Make KASAN run on User Mode Linux on x86_64.
The UML-specific KASAN initializer uses mmap to map the ~16TB of shadow
memory to the location defined by KASAN_SHADOW_OFFSET. kasan_init()
utilizes constructors to initialize KASAN before main().
The location of the KASAN shadow memory, starting at
KASAN_SHADOW_OFFSET, can be configured using the KASAN_SHADOW_OFFSET
option. The default location of this offset is 0x100000000000, which
keeps it out-of-the-way even on UML setups with more "physical" memory.
For low-memory setups, 0x7fff8000 can be used instead, which fits in an
immediate and is therefore faster, as suggested by Dmitry Vyukov. There
is usually enough free space at this location; however, it is a config
option so that it can be easily changed if needed.
Note that, unlike KASAN on other architectures, vmalloc allocations
still use the shadow memory allocated upfront, rather than allocating
and free-ing it per-vmalloc allocation.
If another architecture chooses to go down the same path, we should
replace the checks for CONFIG_UML with something more generic, such
as:
- A CONFIG_KASAN_NO_SHADOW_ALLOC option, which architectures could set
- or, a way of having architecture-specific versions of these vmalloc
and module shadow memory allocation options.
Also note that, while UML supports both KASAN in inline mode
(CONFIG_KASAN_INLINE) and static linking (CONFIG_STATIC_LINK), it does
not support both at the same time.
Signed-off-by: Patricia Alfonso <trishalfonso@google.com>
Co-developed-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: Vincent Whitchurch <vincent.whitchurch@axis.com>
Signed-off-by: David Gow <davidgow@google.com>
Reviewed-by: Johannes Berg <johannes@sipsolutions.net>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
__kasan_unpoison_pages() colours the memory with a random tag and stores
it in page->flags in order to re-create the tagged pointer via
page_to_virt() later. When the tag from the page->flags is read, ensure
that the in-memory tags are already visible by re-ordering the
page_kasan_tag_set() after kasan_unpoison(). The former already has
barriers in place through try_cmpxchg(). On the reader side, the order
is ensured by the address dependency between page->flags and the memory
access.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Link: https://lore.kernel.org/r/20220610152141.2148929-2-catalin.marinas@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
HW_TAGS KASAN skips zeroing page_alloc allocations backing vmalloc
mappings via __GFP_SKIP_ZERO. Instead, these pages are zeroed via
kasan_unpoison_vmalloc() by passing the KASAN_VMALLOC_INIT flag.
The problem is that __kasan_unpoison_vmalloc() does not zero pages when
either kasan_vmalloc_enabled() or is_vmalloc_or_module_addr() fail.
Thus:
1. Change __vmalloc_node_range() to only set KASAN_VMALLOC_INIT when
__GFP_SKIP_ZERO is set.
2. Change __kasan_unpoison_vmalloc() to always zero pages when the
KASAN_VMALLOC_INIT flag is set.
3. Add WARN_ON() asserts to check that KASAN_VMALLOC_INIT cannot be set
in other early return paths of __kasan_unpoison_vmalloc().
Also clean up the comment in __kasan_unpoison_vmalloc.
Link: https://lkml.kernel.org/r/4bc503537efdc539ffc3f461c1b70162eea31cf6.1654798516.git.andreyknvl@google.com
Fixes: 23689e91fb ("kasan, vmalloc: add vmalloc tagging for HW_TAGS")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 1, name: swapper/0
preempt_count: 1, expected: 0
...........
CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.17.1-rt16-yocto-preempt-rt #22
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009),
BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x60/0x8c
dump_stack+0x10/0x12
__might_resched.cold+0x13b/0x173
rt_spin_lock+0x5b/0xf0
___cache_free+0xa5/0x180
qlist_free_all+0x7a/0x160
per_cpu_remove_cache+0x5f/0x70
smp_call_function_many_cond+0x4c4/0x4f0
on_each_cpu_cond_mask+0x49/0xc0
kasan_quarantine_remove_cache+0x54/0xf0
kasan_cache_shrink+0x9/0x10
kmem_cache_shrink+0x13/0x20
acpi_os_purge_cache+0xe/0x20
acpi_purge_cached_objects+0x21/0x6d
acpi_initialize_objects+0x15/0x3b
acpi_init+0x130/0x5ba
do_one_initcall+0xe5/0x5b0
kernel_init_freeable+0x34f/0x3ad
kernel_init+0x1e/0x140
ret_from_fork+0x22/0x30
When the kmem_cache_shrink() was called, the IPI was triggered, the
___cache_free() is called in IPI interrupt context, the local-lock or
spin-lock will be acquired. On PREEMPT_RT kernel, these locks are
replaced with sleepbale rt-spinlock, so the above problem is triggered.
Fix it by moving the qlist_free_allfrom() from IPI interrupt context to
task context when PREEMPT_RT is enabled.
[akpm@linux-foundation.org: reduce ifdeffery]
Link: https://lkml.kernel.org/r/20220401134649.2222485-1-qiang1.zhang@intel.com
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Acked-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kasan_quarantine_remove_cache() is called in kmem_cache_shrink()/
destroy(). The kasan_quarantine_remove_cache() call is protected by
cpuslock in kmem_cache_destroy() to ensure serialization with
kasan_cpu_offline().
However the kasan_quarantine_remove_cache() call is not protected by
cpuslock in kmem_cache_shrink(). When a CPU is going offline and cache
shrink occurs at same time, the cpu_quarantine may be corrupted by
interrupt (per_cpu_remove_cache operation).
So add a cpu_quarantine offline flags check in per_cpu_remove_cache().
[akpm@linux-foundation.org: add comment, per Zqiang]
Link: https://lkml.kernel.org/r/20220414025925.2423818-1-qiang1.zhang@intel.com
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Kasan enables hw tags via kasan_enable_tagging() which based on the mode
passed via kernel command line selects the correct hw backend.
kasan_enable_tagging() is meant to be invoked indirectly via the cpu
features framework of the architectures that support these backends.
Currently the invocation of this function is guarded by
CONFIG_KASAN_KUNIT_TEST which allows the enablement of the correct backend
only when KUNIT tests are enabled in the kernel.
This inconsistency was introduced in commit:
ed6d74446c ("kasan: test: support async (again) and asymm modes for HW_TAGS")
... and prevents to enable MTE on arm64 when KUNIT tests for kasan hw_tags are
disabled.
Fix the issue making sure that the CONFIG_KASAN_KUNIT_TEST guard does not
prevent the correct invocation of kasan_enable_tagging().
Link: https://lkml.kernel.org/r/20220408124323.10028-1-vincenzo.frascino@arm.com
Fixes: ed6d74446c ("kasan: test: support async (again) and asymm modes for HW_TAGS")
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add vmalloc tagging support to HW_TAGS KASAN.
The key difference between HW_TAGS and the other two KASAN modes when it
comes to vmalloc: HW_TAGS KASAN can only assign tags to physical memory.
The other two modes have shadow memory covering every mapped virtual
memory region.
Make __kasan_unpoison_vmalloc() for HW_TAGS KASAN:
- Skip non-VM_ALLOC mappings as HW_TAGS KASAN can only tag a single
mapping of normal physical memory; see the comment in the function.
- Generate a random tag, tag the returned pointer and the allocation,
and initialize the allocation at the same time.
- Propagate the tag into the page stucts to allow accesses through
page_address(vmalloc_to_page()).
The rest of vmalloc-related KASAN hooks are not needed:
- The shadow-related ones are fully skipped.
- __kasan_poison_vmalloc() is kept as a no-op with a comment.
Poisoning and zeroing of physical pages that are backing vmalloc()
allocations are skipped via __GFP_SKIP_KASAN_UNPOISON and
__GFP_SKIP_ZERO: __kasan_unpoison_vmalloc() does that instead.
Enabling CONFIG_KASAN_VMALLOC with HW_TAGS is not yet allowed.
Link: https://lkml.kernel.org/r/d19b2e9e59a9abc59d05b72dea8429dcaea739c6.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Co-developed-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the code responsible for initializing and poisoning memory in
post_alloc_hook() is scattered across two locations: kasan_alloc_pages()
hook for HW_TAGS KASAN and post_alloc_hook() itself. This is confusing.
This and a few following patches combine the code from these two
locations. Along the way, these patches do a step-by-step restructure the
many performed checks to make them easier to follow.
Replace the only caller of kasan_alloc_pages() with its implementation.
As kasan_has_integrated_init() is only true when CONFIG_KASAN_HW_TAGS is
enabled, moving the code does no functional changes.
Also move init and init_tags variables definitions out of
kasan_has_integrated_init() clause in post_alloc_hook(), as they have the
same values regardless of what the if condition evaluates to.
This patch is not useful by itself but makes the simplifications in the
following patches easier to follow.
Link: https://lkml.kernel.org/r/5ac7e0b30f5cbb177ec363ddd7878a3141289592.1643047180.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Acked-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>