commit f4f34e1b82 upstream.
When the frame unwinder is invoked for an oops caused by a call to NULL, it
currently skips the parent function because BP still points to the parent's
stack frame; the (nonexistent) current function only has the first half of
a stack frame, and BP doesn't point to it yet.
Add a special case for IP==0 that calculates a fake BP from SP, then uses
the real BP for the next frame.
Note that this handles first_frame specially: Return information about the
parent function as long as the saved IP is >=first_frame, even if the fake
BP points below it.
With an artificially-added NULL call in prctl_set_seccomp(), before this
patch, the trace is:
Call Trace:
? prctl_set_seccomp+0x3a/0x50
__x64_sys_prctl+0x457/0x6f0
? __ia32_sys_prctl+0x750/0x750
do_syscall_64+0x72/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
After this patch, the trace is:
Call Trace:
prctl_set_seccomp+0x3a/0x50
__x64_sys_prctl+0x457/0x6f0
? __ia32_sys_prctl+0x750/0x750
do_syscall_64+0x72/0x160
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: syzbot <syzbot+ca95b2b7aef9e7cbd6ab@syzkaller.appspotmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Masahiro Yamada <yamada.masahiro@socionext.com>
Cc: Michal Marek <michal.lkml@markovi.net>
Cc: linux-kbuild@vger.kernel.org
Link: https://lkml.kernel.org/r/20190301031201.7416-1-jannh@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 152482580a upstream.
kvm_arch_memslots_updated() is at this point in time an x86-specific
hook for handling MMIO generation wraparound. x86 stashes 19 bits of
the memslots generation number in its MMIO sptes in order to avoid
full page fault walks for repeat faults on emulated MMIO addresses.
Because only 19 bits are used, wrapping the MMIO generation number is
possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that
the generation has changed so that it can invalidate all MMIO sptes in
case the effective MMIO generation has wrapped so as to avoid using a
stale spte, e.g. a (very) old spte that was created with generation==0.
Given that the purpose of kvm_arch_memslots_updated() is to prevent
consuming stale entries, it needs to be called before the new generation
is propagated to memslots. Invalidating the MMIO sptes after updating
memslots means that there is a window where a vCPU could dereference
the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO
spte that was created with (pre-wrap) generation==0.
Fixes: e59dbe09f8 ("KVM: Introduce kvm_arch_memslots_updated()")
Cc: <stable@vger.kernel.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 52f6490940 upstream
Skylake systems will receive a microcode update to address a TSX
errata. This microcode will (by default) clobber PMC3 when TSX
instructions are (speculatively or not) executed.
It also provides an MSR to cause all TSX transaction to abort and
preserve PMC3.
Add the CPUID enumeration and MSR definition.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit a8e911d135 ]
If the kernel is configured with KASAN_EXTRA, the stack size is
increasted significantly because this option sets "-fstack-reuse" to
"none" in GCC [1]. As a result, it triggers stack overrun quite often
with 32k stack size compiled using GCC 8. For example, this reproducer
https://github.com/linux-test-project/ltp/blob/master/testcases/kernel/syscalls/madvise/madvise06.c
triggers a "corrupted stack end detected inside scheduler" very reliably
with CONFIG_SCHED_STACK_END_CHECK enabled.
There are just too many functions that could have a large stack with
KASAN_EXTRA due to large local variables that have been called over and
over again without being able to reuse the stacks. Some noticiable ones
are
size
7648 shrink_page_list
3584 xfs_rmap_convert
3312 migrate_page_move_mapping
3312 dev_ethtool
3200 migrate_misplaced_transhuge_page
3168 copy_process
There are other 49 functions are over 2k in size while compiling kernel
with "-Wframe-larger-than=" even with a related minimal config on this
machine. Hence, it is too much work to change Makefiles for each object
to compile without "-fsanitize-address-use-after-scope" individually.
[1] https://gcc.gnu.org/bugzilla/show_bug.cgi?id=81715#c23
Although there is a patch in GCC 9 to help the situation, GCC 9 probably
won't be released in a few months and then it probably take another
6-month to 1-year for all major distros to include it as a default.
Hence, the stack usage with KASAN_EXTRA can be revisited again in 2020
when GCC 9 is everywhere. Until then, this patch will help users avoid
stack overrun.
This has already been fixed for arm64 for the same reason via
6e8830674e ("arm64: kasan: Increase stack size for KASAN_EXTRA").
Link: http://lkml.kernel.org/r/20190109215209.2903-1-cai@lca.pw
Signed-off-by: Qian Cai <cai@lca.pw>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 2a418cf3f5 upstream.
When calling __put_user(foo(), ptr), the __put_user() macro would call
foo() in between __uaccess_begin() and __uaccess_end(). If that code
were buggy, then those bugs would be run without SMAP protection.
Fortunately, there seem to be few instances of the problem in the
kernel. Nevertheless, __put_user() should be fixed to avoid doing this.
Therefore, evaluate __put_user()'s argument before setting AC.
This issue was noticed when an objtool hack by Peter Zijlstra complained
about genregs_get() and I compared the assembly output to the C source.
[ bp: Massage commit message and fixed up whitespace. ]
Fixes: 11f1a4b975 ("x86: reorganize SMAP handling in user space accesses")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: stable@vger.kernel.org
Link: http://lkml.kernel.org/r/20190225125231.845656645@infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit a31e184e4f upstream.
Memory protection key behavior should be the same in a child as it was
in the parent before a fork. But, there is a bug that resets the
state in the child at fork instead of preserving it.
The creation of new mm's is a bit convoluted. At fork(), the code
does:
1. memcpy() the parent mm to initialize child
2. mm_init() to initalize some select stuff stuff
3. dup_mmap() to create true copies that memcpy() did not do right
For pkeys two bits of state need to be preserved across a fork:
'execute_only_pkey' and 'pkey_allocation_map'.
Those are preserved by the memcpy(), but mm_init() invokes
init_new_context() which overwrites 'execute_only_pkey' and
'pkey_allocation_map' with "new" values.
The author of the code erroneously believed that init_new_context is *only*
called at execve()-time. But, alas, init_new_context() is used at execve()
and fork().
The result is that, after a fork(), the child's pkey state ends up looking
like it does after an execve(), which is totally wrong. pkeys that are
already allocated can be allocated again, for instance.
To fix this, add code called by dup_mmap() to copy the pkey state from
parent to child explicitly. Also add a comment above init_new_context() to
make it more clear to the next poor sod what this code is used for.
Fixes: e8c24d3a23 ("x86/pkeys: Allocation/free syscalls")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: bp@alien8.de
Cc: hpa@zytor.com
Cc: peterz@infradead.org
Cc: mpe@ellerman.id.au
Cc: will.deacon@arm.com
Cc: luto@kernel.org
Cc: jroedel@suse.de
Cc: stable@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20190102215655.7A69518C@viggo.jf.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 68b5e4326e ]
Add the proper includes and make smca_get_name() static.
Fix an actual bug too which the warning triggered:
arch/x86/kernel/cpu/mcheck/therm_throt.c:395:39: error: conflicting \
types for ‘smp_thermal_interrupt’
asmlinkage __visible void __irq_entry smp_thermal_interrupt(struct pt_regs *r)
^~~~~~~~~~~~~~~~~~~~~
In file included from arch/x86/kernel/cpu/mcheck/therm_throt.c:29:
./arch/x86/include/asm/traps.h:107:17: note: previous declaration of \
‘smp_thermal_interrupt’ was here
asmlinkage void smp_thermal_interrupt(void);
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Michael Matz <matz@suse.de>
Cc: x86@kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811081633160.1549@nanos.tec.linutronix.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit e814349950 upstream.
____kvm_handle_fault_on_reboot() provides a generic exception fixup
handler that is used to cleanly handle faults on VMX/SVM instructions
during reboot (or at least try to). If there isn't a reboot in
progress, ____kvm_handle_fault_on_reboot() treats any exception as
fatal to KVM and invokes kvm_spurious_fault(), which in turn generates
a BUG() to get a stack trace and die.
When it was originally added by commit 4ecac3fd6d ("KVM: Handle
virtualization instruction #UD faults during reboot"), the "call" to
kvm_spurious_fault() was handcoded as PUSH+JMP, where the PUSH'd value
is the RIP of the faulting instructing.
The PUSH+JMP trickery is necessary because the exception fixup handler
code lies outside of its associated function, e.g. right after the
function. An actual CALL from the .fixup code would show a slightly
bogus stack trace, e.g. an extra "random" function would be inserted
into the trace, as the return RIP on the stack would point to no known
function (and the unwinder will likely try to guess who owns the RIP).
Unfortunately, the JMP was replaced with a CALL when the macro was
reworked to not spin indefinitely during reboot (commit b7c4145ba2
"KVM: Don't spin on virt instruction faults during reboot"). This
causes the aforementioned behavior where a bogus function is inserted
into the stack trace, e.g. my builds like to blame free_kvm_area().
Revert the CALL back to a JMP. The changelog for commit b7c4145ba2
("KVM: Don't spin on virt instruction faults during reboot") contains
nothing that indicates the switch to CALL was deliberate. This is
backed up by the fact that the PUSH <insn RIP> was left intact.
Note that an alternative to the PUSH+JMP magic would be to JMP back
to the "real" code and CALL from there, but that would require adding
a JMP in the non-faulting path to avoid calling kvm_spurious_fault()
and would add no value, i.e. the stack trace would be the same.
Using CALL:
------------[ cut here ]------------
kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356!
invalid opcode: 0000 [#1] SMP
CPU: 4 PID: 1057 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm]
Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41
RSP: 0018:ffffc900004bbcc8 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff888273fd8000 R08: 00000000000003e8 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000371fb0
R13: 0000000000000000 R14: 000000026d763cf4 R15: ffff888273fd8000
FS: 00007f3d69691700(0000) GS:ffff888277800000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055f89bc56fe0 CR3: 0000000271a5a001 CR4: 0000000000362ee0
Call Trace:
free_kvm_area+0x1044/0x43ea [kvm_intel]
? vmx_vcpu_run+0x156/0x630 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? __set_task_blocked+0x38/0x90
? __set_current_blocked+0x50/0x60
? __fpu__restore_sig+0x97/0x490
? do_vfs_ioctl+0xa1/0x620
? __x64_sys_futex+0x89/0x180
? ksys_ioctl+0x66/0x70
? __x64_sys_ioctl+0x16/0x20
? do_syscall_64+0x4f/0x100
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc
---[ end trace 9775b14b123b1713 ]---
Using JMP:
------------[ cut here ]------------
kernel BUG at /home/sean/go/src/kernel.org/linux/arch/x86/kvm/x86.c:356!
invalid opcode: 0000 [#1] SMP
CPU: 6 PID: 1067 Comm: qemu-system-x86 Not tainted 4.20.0-rc6+ #75
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
RIP: 0010:kvm_spurious_fault+0x5/0x10 [kvm]
Code: <0f> 0b 66 0f 1f 84 00 00 00 00 00 0f 1f 44 00 00 41 55 49 89 fd 41
RSP: 0018:ffffc90000497cd0 EFLAGS: 00010046
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffffffffffff
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff88827058bd40 R08: 00000000000003e8 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000784 R12: ffffc90000369fb0
R13: 0000000000000000 R14: 00000003c8fc6642 R15: ffff88827058bd40
FS: 00007f3d7219e700(0000) GS:ffff888277900000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f3d64001000 CR3: 0000000271c6b004 CR4: 0000000000362ee0
Call Trace:
vmx_vcpu_run+0x156/0x630 [kvm_intel]
? kvm_arch_vcpu_ioctl_run+0x447/0x1a40 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? kvm_vcpu_ioctl+0x368/0x5c0 [kvm]
? __set_task_blocked+0x38/0x90
? __set_current_blocked+0x50/0x60
? __fpu__restore_sig+0x97/0x490
? do_vfs_ioctl+0xa1/0x620
? __x64_sys_futex+0x89/0x180
? ksys_ioctl+0x66/0x70
? __x64_sys_ioctl+0x16/0x20
? do_syscall_64+0x4f/0x100
? entry_SYSCALL_64_after_hwframe+0x44/0xa9
Modules linked in: vhost_net vhost tap kvm_intel kvm irqbypass bridge stp llc
---[ end trace f9daedb85ab3ddba ]---
Fixes: b7c4145ba2 ("KVM: Don't spin on virt instruction faults during reboot")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 0e1b869fff upstream.
Some guests OSes (including Windows 10) write to MSR 0xc001102c
on some cases (possibly while trying to apply a CPU errata).
Make KVM ignore reads and writes to that MSR, so the guest won't
crash.
The MSR is documented as "Execution Unit Configuration (EX_CFG)",
at AMD's "BIOS and Kernel Developer's Guide (BKDG) for AMD Family
15h Models 00h-0Fh Processors".
Cc: stable@vger.kernel.org
Signed-off-by: Eduardo Habkost <ehabkost@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 7aa54be297 upstream.
On x86 we cannot do fetch_or() with a single instruction and thus end up
using a cmpxchg loop, this reduces determinism. Replace the fetch_or()
with a composite operation: tas-pending + load.
Using two instructions of course opens a window we previously did not
have. Consider the scenario:
CPU0 CPU1 CPU2
1) lock
trylock -> (0,0,1)
2) lock
trylock /* fail */
3) unlock -> (0,0,0)
4) lock
trylock -> (0,0,1)
5) tas-pending -> (0,1,1)
load-val <- (0,1,0) from 3
6) clear-pending-set-locked -> (0,0,1)
FAIL: _2_ owners
where 5) is our new composite operation. When we consider each part of
the qspinlock state as a separate variable (as we can when
_Q_PENDING_BITS == 8) then the above is entirely possible, because
tas-pending will only RmW the pending byte, so the later load is able
to observe prior tail and lock state (but not earlier than its own
trylock, which operates on the whole word, due to coherence).
To avoid this we need 2 things:
- the load must come after the tas-pending (obviously, otherwise it
can trivially observe prior state).
- the tas-pending must be a full word RmW instruction, it cannot be an XCHGB for
example, such that we cannot observe other state prior to setting
pending.
On x86 we can realize this by using "LOCK BTS m32, r32" for
tas-pending followed by a regular load.
Note that observing later state is not a problem:
- if we fail to observe a later unlock, we'll simply spin-wait for
that store to become visible.
- if we observe a later xchg_tail(), there is no difference from that
xchg_tail() having taken place before the tas-pending.
Suggested-by: Will Deacon <will.deacon@arm.com>
Reported-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: andrea.parri@amarulasolutions.com
Cc: longman@redhat.com
Fixes: 59fb586b4a ("locking/qspinlock: Remove unbounded cmpxchg() loop from locking slowpath")
Link: https://lkml.kernel.org/r/20181003130957.183726335@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
[bigeasy: GEN_BINARY_RMWcc macro redo]
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 326e742533 upstream.
Since commit e79f245dde ("X86/KVM: Properly update 'tsc_offset' to
represent the running guest"), vcpu->arch.tsc_offset meaning was
changed to always reflect the tsc_offset value set on active VMCS.
Regardless if vCPU is currently running L1 or L2.
However, above mentioned commit failed to also change
kvm_vcpu_write_tsc_offset() to set vcpu->arch.tsc_offset correctly.
This is because vmx_write_tsc_offset() could set the tsc_offset value
in active VMCS to given offset parameter *plus vmcs12->tsc_offset*.
However, kvm_vcpu_write_tsc_offset() just sets vcpu->arch.tsc_offset
to given offset parameter. Without taking into account the possible
addition of vmcs12->tsc_offset. (Same is true for SVM case).
Fix this issue by changing kvm_x86_ops->write_tsc_offset() to return
actually set tsc_offset in active VMCS and modify
kvm_vcpu_write_tsc_offset() to set returned value in
vcpu->arch.tsc_offset.
In addition, rename write_tsc_offset() callback to write_l1_tsc_offset()
to make it clear that it is meant to set L1 TSC offset.
Fixes: e79f245dde ("X86/KVM: Properly update 'tsc_offset' to represent the running guest")
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Mihai Carabas <mihai.carabas@oracle.com>
Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Leonid Shatz <leonid.shatz@oracle.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6b3e64c237 upstream
If 'prctl' mode of user space protection from spectre v2 is selected
on the kernel command-line, STIBP and IBPB are applied on tasks which
restrict their indirect branch speculation via prctl.
SECCOMP enables the SSBD mitigation for sandboxed tasks already, so it
makes sense to prevent spectre v2 user space to user space attacks as
well.
The Intel mitigation guide documents how STIPB works:
Setting bit 1 (STIBP) of the IA32_SPEC_CTRL MSR on a logical processor
prevents the predicted targets of indirect branches on any logical
processor of that core from being controlled by software that executes
(or executed previously) on another logical processor of the same core.
Ergo setting STIBP protects the task itself from being attacked from a task
running on a different hyper-thread and protects the tasks running on
different hyper-threads from being attacked.
While the document suggests that the branch predictors are shielded between
the logical processors, the observed performance regressions suggest that
STIBP simply disables the branch predictor more or less completely. Of
course the document wording is vague, but the fact that there is also no
requirement for issuing IBPB when STIBP is used points clearly in that
direction. The kernel still issues IBPB even when STIBP is used until Intel
clarifies the whole mechanism.
IBPB is issued when the task switches out, so malicious sandbox code cannot
mistrain the branch predictor for the next user space task on the same
logical processor.
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185006.051663132@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 6d991ba509 upstream
The seccomp speculation control operates on all tasks of a process, but
only the current task of a process can update the MSR immediately. For the
other threads the update is deferred to the next context switch.
This creates the following situation with Process A and B:
Process A task 2 and Process B task 1 are pinned on CPU1. Process A task 2
does not have the speculation control TIF bit set. Process B task 1 has the
speculation control TIF bit set.
CPU0 CPU1
MSR bit is set
ProcB.T1 schedules out
ProcA.T2 schedules in
MSR bit is cleared
ProcA.T1
seccomp_update()
set TIF bit on ProcA.T2
ProcB.T1 schedules in
MSR is not updated <-- FAIL
This happens because the context switch code tries to avoid the MSR update
if the speculation control TIF bits of the incoming and the outgoing task
are the same. In the worst case ProcB.T1 and ProcA.T2 are the only tasks
scheduling back and forth on CPU1, which keeps the MSR stale forever.
In theory this could be remedied by IPIs, but chasing the remote task which
could be migrated is complex and full of races.
The straight forward solution is to avoid the asychronous update of the TIF
bit and defer it to the next context switch. The speculation control state
is stored in task_struct::atomic_flags by the prctl and seccomp updates
already.
Add a new TIF_SPEC_FORCE_UPDATE bit and set this after updating the
atomic_flags. Check the bit on context switch and force a synchronous
update of the speculation control if set. Use the same mechanism for
updating the current task.
Reported-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1811272247140.1875@nanos.tec.linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 4c71a2b6fd upstream
The IBPB speculation barrier is issued from switch_mm() when the kernel
switches to a user space task with a different mm than the user space task
which ran last on the same CPU.
An additional optimization is to avoid IBPB when the incoming task can be
ptraced by the outgoing task. This optimization only works when switching
directly between two user space tasks. When switching from a kernel task to
a user space task the optimization fails because the previous task cannot
be accessed anymore. So for quite some scenarios the optimization is just
adding overhead.
The upcoming conditional IBPB support will issue IBPB only for user space
tasks which have the TIF_SPEC_IB bit set. This requires to handle the
following cases:
1) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB set to a user space task (potential victim) which has
TIF_SPEC_IB not set.
2) Switch from a user space task (potential attacker) which has
TIF_SPEC_IB not set to a user space task (potential victim) which has
TIF_SPEC_IB set.
This needs to be optimized for the case where the IBPB can be avoided when
only kernel threads ran in between user space tasks which belong to the
same process.
The current check whether two tasks belong to the same context is using the
tasks context id. While correct, it's simpler to use the mm pointer because
it allows to mangle the TIF_SPEC_IB bit into it. The context id based
mechanism requires extra storage, which creates worse code.
When a task is scheduled out its TIF_SPEC_IB bit is mangled as bit 0 into
the per CPU storage which is used to track the last user space mm which was
running on a CPU. This bit can be used together with the TIF_SPEC_IB bit of
the incoming task to make the decision whether IBPB needs to be issued or
not to cover the two cases above.
As conditional IBPB is going to be the default, remove the dubious ptrace
check for the IBPB always case and simply issue IBPB always when the
process changes.
Move the storage to a different place in the struct as the original one
created a hole.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Casey Schaufler <casey.schaufler@intel.com>
Cc: Asit Mallick <asit.k.mallick@intel.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Jon Masters <jcm@redhat.com>
Cc: Waiman Long <longman9394@gmail.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Dave Stewart <david.c.stewart@intel.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181125185005.466447057@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit cfb634fe30 ]
According to volume 3 of the SDM, bits 63:15 and 12:4 of the exit
qualification field for debug exceptions are reserved (cleared to
0). However, the SDM is incorrect about bit 16 (corresponding to
DR6.RTM). This bit should be set if a debug exception (#DB) or a
breakpoint exception (#BP) occurred inside an RTM region while
advanced debugging of RTM transactional regions was enabled. Note that
this is the opposite of DR6.RTM, which "indicates (when clear) that a
debug exception (#DB) or breakpoint exception (#BP) occurred inside an
RTM region while advanced debugging of RTM transactional regions was
enabled."
There is still an issue with stale DR6 bits potentially being
misreported for the current debug exception. DR6 should not have been
modified before vectoring the #DB exception, and the "new DR6 bits"
should be available somewhere, but it was and they aren't.
Fixes: b96fb43977 ("KVM: nVMX: fixes to nested virt interrupt injection")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit f77084d963 upstream.
The WARN_ON_ONCE(__read_cr3() != build_cr3()) in switch_mm_irqs_off()
triggers every once in a while during a snapshotted system upgrade.
The warning triggers since commit decab0888e ("x86/mm: Remove
preempt_disable/enable() from __native_flush_tlb()"). The callchain is:
get_page_from_freelist() -> post_alloc_hook() -> __kernel_map_pages()
with CONFIG_DEBUG_PAGEALLOC enabled.
Disable preemption during CR3 reset / __flush_tlb_all() and add a comment
why preemption has to be disabled so it won't be removed accidentaly.
Add another preemptible() check in __flush_tlb_all() to catch callers with
enabled preemption when PGE is enabled, because PGE enabled does not
trigger the warning in __native_flush_tlb(). Suggested by Andy Lutomirski.
Fixes: decab0888e ("x86/mm: Remove preempt_disable/enable() from __native_flush_tlb()")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20181017103432.zgv46nlu3hc7k4rq@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Booting an i486 with "no387 nofxsr" ends with with the following crash:
math_emulate: 0060:c101987d
Kernel panic - not syncing: Math emulation needed in kernel
on the first context switch in user land.
The reason is that copy_fpregs_to_fpstate() tries FNSAVE which does not work
as the FPU is turned off.
This bug was introduced in:
f1c8cd0176 ("x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active")
Add a check for X86_FEATURE_FPU before trying to save FPU registers (we
have such a check in switch_fpu_finish() already).
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Reviewed-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: f1c8cd0176 ("x86/fpu: Change fpu->fpregs_active users to fpu->fpstate_active")
Link: http://lkml.kernel.org/r/20181016202525.29437-4-bigeasy@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Dan writes:
"libnvdimm/dax 4.19-rc8
* Fix a livelock in dax_layout_busy_page() present since v4.18. The
lockup triggers when truncating an actively mapped huge page out of
a mapping pinned for direct-I/O.
* Fix mprotect() clobbers of _PAGE_DEVMAP. Broken since v4.5
mprotect() clears this flag that is needed to communicate the
liveness of device pages to the get_user_pages() path."
* tag 'libnvdimm-fixes-4.19-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
mm: Preserve _PAGE_DEVMAP across mprotect() calls
filesystem-dax: Fix dax_layout_busy_page() livelock
Currently _PAGE_DEVMAP bit is not preserved in mprotect(2) calls. As a
result we will see warnings such as:
BUG: Bad page map in process JobWrk0013 pte:800001803875ea25 pmd:7624381067
addr:00007f0930720000 vm_flags:280000f9 anon_vma: (null) mapping:ffff97f2384056f0 index:0
file:457-000000fe00000030-00000009-000000ca-00000001_2001.fileblock fault:xfs_filemap_fault [xfs] mmap:xfs_file_mmap [xfs] readpage: (null)
CPU: 3 PID: 15848 Comm: JobWrk0013 Tainted: G W 4.12.14-2.g7573215-default #1 SLE12-SP4 (unreleased)
Hardware name: Intel Corporation S2600WFD/S2600WFD, BIOS SE5C620.86B.01.00.0833.051120182255 05/11/2018
Call Trace:
dump_stack+0x5a/0x75
print_bad_pte+0x217/0x2c0
? enqueue_task_fair+0x76/0x9f0
_vm_normal_page+0xe5/0x100
zap_pte_range+0x148/0x740
unmap_page_range+0x39a/0x4b0
unmap_vmas+0x42/0x90
unmap_region+0x99/0xf0
? vma_gap_callbacks_rotate+0x1a/0x20
do_munmap+0x255/0x3a0
vm_munmap+0x54/0x80
SyS_munmap+0x1d/0x30
do_syscall_64+0x74/0x150
entry_SYSCALL_64_after_hwframe+0x3d/0xa2
...
when mprotect(2) gets used on DAX mappings. Also there is a wide variety
of other failures that can result from the missing _PAGE_DEVMAP flag
when the area gets used by get_user_pages() later.
Fix the problem by including _PAGE_DEVMAP in a set of flags that get
preserved by mprotect(2).
Fixes: 69660fd797 ("x86, mm: introduce _PAGE_DEVMAP")
Fixes: ebd3119793 ("powerpc/mm: Add devmap support for ppc64")
Cc: <stable@vger.kernel.org>
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Ingo writes:
"perf fixes:
- fix a CPU#0 hot unplug bug and a PCI enumeration bug in the x86 Intel uncore PMU driver
- fix a CPU event enumeration bug in the x86 AMD PMU driver
- fix a perf ring-buffer corruption bug when using tracepoints
- fix a PMU unregister locking bug"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/amd/uncore: Set ThreadMask and SliceMask for L3 Cache perf events
perf/x86/intel/uncore: Fix PCI BDF address of M3UPI on SKX
perf/ring_buffer: Prevent concurent ring buffer access
perf/x86/intel/uncore: Use boot_cpu_data.phys_proc_id instead of hardcorded physical package ID 0
perf/core: Fix perf_pmu_unregister() locking
Thomas writes:
"A set of fixes for x86:
- Resolve the kvmclock regression on AMD systems with memory
encryption enabled. The rework of the kvmclock memory allocation
during early boot results in encrypted storage, which is not
shareable with the hypervisor. Create a new section for this data
which is mapped unencrypted and take care that the later
allocations for shared kvmclock memory is unencrypted as well.
- Fix the build regression in the paravirt code introduced by the
recent spectre v2 updates.
- Ensure that the initial static page tables cover the fixmap space
correctly so early console always works. This worked so far by
chance, but recent modifications to the fixmap layout can -
depending on kernel configuration - move the relevant entries to a
different place which is not covered by the initial static page
tables.
- Address the regressions and issues which got introduced with the
recent extensions to the Intel Recource Director Technology code.
- Update maintainer entries to document reality"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Expand static page table for fixmap space
MAINTAINERS: Add X86 MM entry
x86/intel_rdt: Add Reinette as co-maintainer for RDT
MAINTAINERS: Add Borislav to the x86 maintainers
x86/paravirt: Fix some warning messages
x86/intel_rdt: Fix incorrect loop end condition
x86/intel_rdt: Fix exclusive mode handling of MBA resource
x86/intel_rdt: Fix incorrect loop end condition
x86/intel_rdt: Do not allow pseudo-locking of MBA resource
x86/intel_rdt: Fix unchecked MSR access
x86/intel_rdt: Fix invalid mode warning when multiple resources are managed
x86/intel_rdt: Global closid helper to support future fixes
x86/intel_rdt: Fix size reporting of MBA resource
x86/intel_rdt: Fix data type in parsing callbacks
x86/kvm: Use __bss_decrypted attribute in shared variables
x86/mm: Add .bss..decrypted section to hold shared variables
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access
to reads of MSR_PLATFORM_INFO.
Disabling access to reads of this MSR gives userspace the control to "expose"
this platform-dependent information to guests in a clear way. As it exists
today, guests that read this MSR would get unpopulated information if userspace
hadn't already set it (and prior to this patch series, only the CPUID faulting
information could have been populated). This existing interface could be
confusing if guests don't handle the potential for incorrect/incomplete
information gracefully (e.g. zero reported for base frequency).
Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state,
it is possible for a vCPU to be blocked while it is in guest-mode.
According to Intel SDM 26.6.5 Interrupt-Window Exiting and
Virtual-Interrupt Delivery: "These events wake the logical processor
if it just entered the HLT state because of a VM entry".
Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending
deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU
should be waken from the HLT state and injected with the interrupt.
In addition, if while the vCPU is blocked (while it is in guest-mode),
it receives a nested posted-interrupt, then the vCPU should also be
waken and injected with the posted interrupt.
To handle these cases, this patch enhances kvm_vcpu_has_events() to also
check if there is a pending interrupt in L2 virtual APICv provided by
L1. That is, it evaluates if there is a pending virtual interrupt for L2
by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1
Evaluation of Pending Interrupts.
Note that this also handles the case of nested posted-interrupt by the
fact RVI is updated in vmx_complete_nested_posted_interrupt() which is
called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() ->
kvm_vcpu_running() -> vmx_check_nested_events() ->
vmx_complete_nested_posted_interrupt().
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These structures are going to be used from KVM code so let's make
their names reflect their Hyper-V origin.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A VMX preemption timer value of '0' is guaranteed to cause a VMExit
prior to the CPU executing any instructions in the guest. Use the
preemption timer (if it's supported) to trigger immediate VMExit
in place of the current method of sending a self-IPI. This ensures
that pending VMExit injection to L1 occurs prior to executing any
instructions in the guest (regardless of nesting level).
When deferring VMExit injection, KVM generates an immediate VMExit
from the (possibly nested) guest by sending itself an IPI. Because
hardware interrupts are blocked prior to VMEnter and are unblocked
(in hardware) after VMEnter, this results in taking a VMExit(INTR)
before any guest instruction is executed. But, as this approach
relies on the IPI being received before VMEnter executes, it only
works as intended when KVM is running as L0. Because there are no
architectural guarantees regarding when IPIs are delivered, when
running nested the INTR may "arrive" long after L2 is running e.g.
L0 KVM doesn't force an immediate switch to L1 to deliver an INTR.
For the most part, this unintended delay is not an issue since the
events being injected to L1 also do not have architectural guarantees
regarding their timing. The notable exception is the VMX preemption
timer[1], which is architecturally guaranteed to cause a VMExit prior
to executing any instructions in the guest if the timer value is '0'
at VMEnter. Specifically, the delay in injecting the VMExit causes
the preemption timer KVM unit test to fail when run in a nested guest.
Note: this approach is viable even on CPUs with a broken preemption
timer, as broken in this context only means the timer counts at the
wrong rate. There are no known errata affecting timer value of '0'.
[1] I/O SMIs also have guarantees on when they arrive, but I have
no idea if/how those are emulated in KVM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Use a hook for SVM instead of leaving the default in x86.c - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When VMX is used with flexpriority disabled (because of no support or
if disabled with module parameter) MMIO interface to lAPIC is still
available in x2APIC mode while it shouldn't be (kvm-unit-tests):
PASS: apic_disable: Local apic enabled in x2APIC mode
PASS: apic_disable: CPUID.1H:EDX.APIC[bit 9] is set
FAIL: apic_disable: *0xfee00030: 50014
The issue appears because we basically do nothing while switching to
x2APIC mode when APIC access page is not used. apic_mmio_{read,write}
only check if lAPIC is disabled before proceeding to actual write.
When APIC access is virtualized we correctly manipulate with VMX controls
in vmx_set_virtual_apic_mode() and we don't get vmexits from memory writes
in x2APIC mode so there's no issue.
Disabling MMIO interface seems to be easy. The question is: what do we
do with these reads and writes? If we add apic_x2apic_mode() check to
apic_mmio_in_range() and return -EOPNOTSUPP these reads and writes will
go to userspace. When lAPIC is in kernel, Qemu uses this interface to
inject MSIs only (see kvm_apic_mem_write() in hw/i386/kvm/apic.c). This
somehow works with disabled lAPIC but when we're in xAPIC mode we will
get a real injected MSI from every write to lAPIC. Not good.
The simplest solution seems to be to just ignore writes to the region
and return ~0 for all reads when we're in x2APIC mode. This is what this
patch does. However, this approach is inconsistent with what currently
happens when flexpriority is enabled: we allocate APIC access page and
create KVM memory region so in x2APIC modes all reads and writes go to
this pre-allocated page which is, btw, the same for all vCPUs.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvmclock defines few static variables which are shared with the
hypervisor during the kvmclock initialization.
When SEV is active, memory is encrypted with a guest-specific key, and
if the guest OS wants to share the memory region with the hypervisor
then it must clear the C-bit before sharing it.
Currently, we use kernel_physical_mapping_init() to split large pages
before clearing the C-bit on shared pages. But it fails when called from
the kvmclock initialization (mainly because the memblock allocator is
not ready that early during boot).
Add a __bss_decrypted section attribute which can be used when defining
such shared variable. The so-defined variables will be placed in the
.bss..decrypted section. This section will be mapped with C=0 early
during boot.
The .bss..decrypted section has a big chunk of memory that may be unused
when memory encryption is not active, free it when memory encryption is
not active.
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Radim Krčmář<rkrcmar@redhat.com>
Cc: kvm@vger.kernel.org
Link: https://lkml.kernel.org/r/1536932759-12905-2-git-send-email-brijesh.singh@amd.com
This reverts commit 1f40a46cf4.
It turned out that this patch is not sufficient to enable PTI on 32 bit
systems with legacy 2-level page-tables. In this paging mode the huge-page
PTEs are in the top-level page-table directory, where also the mirroring to
the user-space page-table happens. So every huge PTE exits twice, in the
kernel and in the user page-table.
That means that accessed/dirty bits need to be fetched from two PTEs in
this mode to be safe, but this is not trivial to implement because it needs
changes to generic code just for the sake of enabling PTI with 32-bit
legacy paging. As all systems that need PTI should support PAE anyway,
remove support for PTI when 32-bit legacy paging is used.
Fixes: 7757d607c6 ('x86/pti: Allow CONFIG_PAGE_TABLE_ISOLATION for x86_32')
Reported-by: Meelis Roos <mroos@linux.ee>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: hpa@zytor.com
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Link: https://lkml.kernel.org/r/1536922754-31379-1-git-send-email-joro@8bytes.org
Pull x86 fixes from Thomas Gleixner:
"A set of fixes for x86:
- Prevent multiplication result truncation on 32bit. Introduced with
the early timestamp reworrk.
- Ensure microcode revision storage to be consistent under all
circumstances
- Prevent write tearing of PTEs
- Prevent confusion of user and kernel reegisters when dumping fatal
signals verbosely
- Make an error return value in a failure path of the vector
allocation negative. Returning EINVAL might the caller assume
success and causes further wreckage.
- A trivial kernel doc warning fix"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Use WRITE_ONCE() when setting PTEs
x86/apic/vector: Make error return value negative
x86/process: Don't mix user/kernel regs in 64bit __show_regs()
x86/tsc: Prevent result truncation on 32bit
x86: Fix kernel-doc atomic.h warnings
x86/microcode: Update the new microcode revision unconditionally
x86/microcode: Make sure boot_cpu_data.microcode is up-to-date