On STM32MP25, OTP area may be read/written by using BSEC (boot, security
and OTP control). The BSEC internal peripheral is only managed by the
secure world.
The 12 Kbits of OTP (effective) are organized into the following regions:
- lower OTP (OTP0 to OTP127) = 4096 lower OTP bits,
bitwise (1-bit) programmable
- mid OTP (OTP128 to OTP255) = 4096 middle OTP bits,
bulk (32-bit) programmable
- upper OTP (OTP256 to OTP383) = 4096 upper OTP bits,
bulk (32-bit) programmable,
only accessible when BSEC is in closed state.
As HWKEY and ECIES key are only accessible by ROM code;
only 368 OTP words are managed in this driver (OTP0 to OTP267).
This patch adds the STM32MP25 configuration for reading and writing
the OTP data using the OP-TEE BSEC TA services.
Signed-off-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20231215111536.316972-11-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Binding for fixed NVMEM cells defined directly as NVMEM device subnodes
has been deprecated. It has been replaced by the "fixed-layout" NVMEM
layout binding.
New syntax is meant to be clearer and should help avoiding imprecise
bindings.
NVMEM subsystem already supports the new binding. It should be a good
idea to limit support for old syntax to existing drivers that actually
support & use it (we can't break backward compatibility!). That way we
additionally encourage new bindings & drivers to ignore deprecated
binding.
It wasn't clear (to me) if rtc and w1 code actually uses old syntax
fixed cells. I enabled them to don't risk any breakage.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
[for meson-{efuse,mx-efuse}.c]
Acked-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[for mtk-efuse.c, nvmem/core.c, nvmem-provider.h]
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
[MT8192, MT8195 Chromebooks]
Tested-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
[for microchip-otpc.c]
Reviewed-by: Claudiu Beznea <claudiu.beznea@microchip.com>
[SAMA7G5-EK]
Tested-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Acked-by: Jernej Skrabec <jernej.skrabec@gmail.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20231020105545.216052-3-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On STM32MP15x SoC, the SMC backend is optional when OP-TEE is used;
the PTA BSEC should be used as it is done on STM32MP13x platform,
but the BSEC SMC can be also used: it is a legacy mode in OP-TEE,
not recommended but used in previous OP-TEE firmware.
The presence of OP-TEE is dynamically detected in STM32MP15x device tree
and the supported NVMEM backend is dynamically detected:
- PTA with stm32_bsec_pta_find
- SMC with stm32_bsec_check
With OP-TEE but without PTA and SMC detection, the probe is deferred for
STM32MP15x devices.
On STM32MP13x platform, only the PTA is supported with cfg->ta = true
and this detection is skipped.
Signed-off-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Reviewed-by: Etienne Carriere <etienne.carriere@linaro.org>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20230206134356.839737-19-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
As the upper OTPs are ECC protected, they support only one 32 bits word
programming.
For a second modification of this word, these ECC become invalid and
this OTP will be no more accessible, the shadowed value is invalid.
This patch adds a warning to indicate an upper OTP update, because this
operation is dangerous as OTP is not locked by the driver after the first
update to avoid a second update.
Signed-off-by: Patrick Delaunay <patrick.delaunay@foss.st.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Link: https://lore.kernel.org/r/20221118063932.6418-3-srinivas.kandagatla@linaro.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
On STM32MP15, OTP area may be read/written by using BSEC (boot, security
and OTP control). BSEC registers set is composed of various regions, among
which control registers and OTP shadow registers.
Secure monitor calls are involved in this process to allow (or deny)
access to the full range of OTP data.
This adds support for reading and writing OTP data using SMC services.
Data content can be aligned on 16-bits or 8-bits. Then take care of it,
since BSEC data is 32-bits wide.
Signed-off-by: Fabrice Gasnier <fabrice.gasnier@st.com>
Signed-off-by: Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>