Recognise and pass the appropriate signal to the user program when a
hashchk instruction triggers. This is independent of allowing
configuration of DEXCR[NPHIE], as a hypervisor can enforce this aspect
regardless of the kernel.
The signal mirrors how ARM reports their similar check failure. For
example, their FPAC handler in arch/arm64/kernel/traps.c do_el0_fpac()
does this. When we fail to read the instruction that caused the fault
we send a segfault, similar to how emulate_math() does it.
Signed-off-by: Benjamin Gray <bgray@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230616034846.311705-5-bgray@linux.ibm.com
PC-Relative or PCREL addressing is an extension to the ELF ABI which
uses Power ISA v3.1 PC-relative instructions to calculate addresses,
rather than the traditional TOC scheme.
Add an option to build vmlinux using pcrel addressing. Modules continue
to use TOC addressing.
- TOC address helpers and r2 are poisoned with -1 when running vmlinux.
r2 could be used for something useful once things are ironed out.
- Assembly must call C functions with @notoc annotation, or the linker
complains aobut a missing nop after the call. This is done with the
CFUNC macro introduced earlier.
- Boot: with the exception of prom_init, the execution branches to the
kernel virtual address early in boot, before any addresses are
generated, which ensures 34-bit pcrel addressing does not miss the
high PAGE_OFFSET bits. TOC relative addressing has a similar
requirement. prom_init does not go to the virtual address and its
addresses should not carry over to the post-prom kernel.
- Ftrace trampolines are converted from TOC addressing to pcrel
addressing, including module ftrace trampolines that currently use the
kernel TOC to find ftrace target functions.
- BPF function prologue and function calling generation are converted
from TOC to pcrel.
- copypage_64.S has an interesting problem, prefixed instructions have
alignment restrictions so the linker can add padding, which makes the
assembler treat the difference between two local labels as
non-constant even if alignment is arranged so padding is not required.
This may need toolchain help to solve nicely, for now move the prefix
instruction out of the alternate patch section to work around it.
This reduces kernel text size by about 6%.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20230408021752.862660-6-npiggin@gmail.com
The wait instruction encoding changed between ISA v2.07 and ISA v3.0.
In v3.1 the instruction gained a new field.
Update the PPC_WAIT macro to the current encoding. Rename the older
incompatible one with a _v203 suffix as it was introduced in v2.03
(the WC field was introduced in v2.07 but the kernel only uses WC=0).
Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org>
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220920122259.363092-1-npiggin@gmail.com
The eh field must remain 0 for PPC32 and is only used
by PPC64.
Don't hide that behind a macro, just leave the responsibility
to the user.
At the time being, the only users of PPC_RAW_L{WDQ}ARX are
setting the eh field to 0, so the special handling of __PPC_EH
is useless. Just take the value given by the caller.
Same for DEFINE_TESTOP(), don't do special handling in that
macro, ensure the caller hands over the proper eh value.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Use 'n' constraint per Segher]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/8b9c8a1a14f9143552a85fcbf96698224a8c2469.1659430931.git.christophe.leroy@csgroup.eu
Per the ISA, a Trace interrupt is not generated for:
- [h|u]rfi[d]
- rfscv
- sc, scv, and Trap instructions that trap
- Power-Saving Mode instructions
- other instructions that cause interrupts (other than Trace interrupts)
- the first instructions of any interrupt handler (applies to Branch and Single Step tracing;
CIABR matches may still occur)
- instructions that are emulated by software
Add a helper to check for instructions belonging to the first four
categories above and to reject kprobes, uprobes and xmon breakpoints on
such instructions. We reject probing on instructions belonging to these
categories across all ISA versions and across both BookS and BookE.
For trap instructions, we can't know in advance if they can cause a
trap, and there is no good reason to allow probing on those. Also,
uprobes already refuses to probe trap instructions and kprobes does not
allow probes on trap instructions used for kernel warnings and bugs. As
such, stop allowing any type of probes/breakpoints on trap instruction
across uprobes, kprobes and xmon.
For some of the fp/altivec instructions that can generate an interrupt
and which we emulate in the kernel (altivec assist, for example), we
check and turn off single stepping in emulate_single_step().
Instructions generating a DSI are restarted and single stepping normally
completes once the instruction is completed.
In uprobes, if a single stepped instruction results in a non-fatal
signal to be delivered to the task, such signals are "delayed" until
after the instruction completes. For fatal signals, single stepping is
cancelled and the instruction restarted in-place so that core dump
captures proper addresses.
In kprobes, we do not allow probes on instructions having an extable
entry and we also do not allow probing interrupt vectors.
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/f56ee979d50b8711fae350fc97870f3ca34acd75.1648648712.git.naveen.n.rao@linux.vnet.ibm.com
The VAS window may not be active if the system looses credits and
the NX generates page fault when it receives request on unmap
paste address.
The kernel handles the fault by remap new paste address if the
window is active again, Otherwise return the paste instruction
failure if the executed instruction that caused the fault was
a paste.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Haren Myneni <haren@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/492b9aefd593061d51dda67ee4d2fc449c000dce.camel@linux.ibm.com
Johan reported the below crash with test_bpf on ppc64 e5500:
test_bpf: #296 ALU_END_FROM_LE 64: 0x0123456789abcdef -> 0x67452301 jited:1
Oops: Exception in kernel mode, sig: 4 [#1]
BE PAGE_SIZE=4K SMP NR_CPUS=24 QEMU e500
Modules linked in: test_bpf(+)
CPU: 0 PID: 76 Comm: insmod Not tainted 5.14.0-03771-g98c2059e008a-dirty #1
NIP: 8000000000061c3c LR: 80000000006dea64 CTR: 8000000000061c18
REGS: c0000000032d3420 TRAP: 0700 Not tainted (5.14.0-03771-g98c2059e008a-dirty)
MSR: 0000000080089000 <EE,ME> CR: 88002822 XER: 20000000 IRQMASK: 0
<...>
NIP [8000000000061c3c] 0x8000000000061c3c
LR [80000000006dea64] .__run_one+0x104/0x17c [test_bpf]
Call Trace:
.__run_one+0x60/0x17c [test_bpf] (unreliable)
.test_bpf_init+0x6a8/0xdc8 [test_bpf]
.do_one_initcall+0x6c/0x28c
.do_init_module+0x68/0x28c
.load_module+0x2460/0x2abc
.__do_sys_init_module+0x120/0x18c
.system_call_exception+0x110/0x1b8
system_call_common+0xf0/0x210
--- interrupt: c00 at 0x101d0acc
<...>
---[ end trace 47b2bf19090bb3d0 ]---
Illegal instruction
The illegal instruction turned out to be 'ldbrx' emitted for
BPF_FROM_[L|B]E, which was only introduced in ISA v2.06. Guard use of
the same and implement an alternative approach for older processors.
Fixes: 156d0e290e ("powerpc/ebpf/jit: Implement JIT compiler for extended BPF")
Reported-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Tested-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Acked-by: Johan Almbladh <johan.almbladh@anyfinetworks.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/d1e51c6fdf572062cf3009a751c3406bda01b832.1641468127.git.naveen.n.rao@linux.vnet.ibm.com
The dssall ("Data Stream Stop All") instruction is obsolete altogether
with other Data Cache Instructions since ISA 2.03 (year 2006).
LLVM IAS does not support it but PPC970 seems to be using it.
This switches dssall to .long as there is no much point in fixing LLVM.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20211221055904.555763-6-aik@ozlabs.ru
If the target of a function call is within 32 Mbytes distance, use a
standard function call with 'bl' instead of the 'lis/ori/mtlr/blrl'
sequence.
In the first pass, no memory has been allocated yet and the code
position is not known yet (image pointer is NULL). This pass is there
to calculate the amount of memory to allocate for the EBPF code, so
assume the 4 instructions sequence is required, so that enough memory
is allocated.
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/74944a1e3e5cfecc141e440a6ccd37920e186b70.1618227846.git.christophe.leroy@csgroup.eu
Add tests for the prefixed versions of the floating-point load/stores
that are currently tested. This includes the following instructions:
* Prefixed Load Floating-Point Single (plfs)
* Prefixed Load Floating-Point Double (plfd)
* Prefixed Store Floating-Point Single (pstfs)
* Prefixed Store Floating-Point Double (pstfd)
Skip the new tests if ISA v3.10 is unsupported.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
[mpe: Fix conflicts with ppc-opcode.h changes]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200525025923.19843-2-jniethe5@gmail.com
Add tests for the prefixed versions of the integer load/stores that
are currently tested. This includes the following instructions:
* Prefixed Load Doubleword (pld)
* Prefixed Load Word and Zero (plwz)
* Prefixed Store Doubleword (pstd)
Skip the new tests if ISA v3.1 is unsupported.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
[mpe: Fix conflicts with ppc-opcode.h changes]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200525025923.19843-1-jniethe5@gmail.com
POWER10 introduces two new variants of dcbf instructions (dcbstps and dcbfps)
that can be used to write modified locations back to persistent storage.
Additionally, POWER10 also introduce phwsync and plwsync which can be used
to establish order of these writes to persistent storage.
This patch exposes these instructions to the rest of the kernel. The existing
dcbf and hwsync instructions in P8 and P9 are adequate to enable appropriate
synchronization with OpenCAPI-hosted persistent storage. Hence the new
instructions are added as a variant of the old ones that old hardware
won't differentiate.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200701072235.223558-3-aneesh.kumar@linux.ibm.com
Returning from an interrupt or syscall to a signal handler currently
begins execution directly at the handler's entry point, with LR set to
the address of the sigreturn trampoline. When the signal handler
function returns, it runs the trampoline. It looks like this:
# interrupt at user address xyz
# kernel stuff... signal is raised
rfid
# void handler(int sig)
addis 2,12,.TOC.-.LCF0@ha
addi 2,2,.TOC.-.LCF0@l
mflr 0
std 0,16(1)
stdu 1,-96(1)
# handler stuff
ld 0,16(1)
mtlr 0
blr
# __kernel_sigtramp_rt64
addi r1,r1,__SIGNAL_FRAMESIZE
li r0,__NR_rt_sigreturn
sc
# kernel executes rt_sigreturn
rfid
# back to user address xyz
Note the blr with no matching bl. This can corrupt the return
predictor.
Solve this by instead resuming execution at the signal trampoline
which then calls the signal handler. qtrace-tools link_stack checker
confirms the entire user/kernel/vdso cycle is balanced after this
patch, whereas it's not upstream.
Alan confirms the dwarf unwind info still looks good. gdb still
recognises the signal frame and can step into parent frames if it
break inside a signal handler.
Performance is pretty noisy, not a very significant change on a POWER9
here, but branch misses are consistently a lot lower on a
microbenchmark:
Performance counter stats for './signal':
13,085.72 msec task-clock # 1.000 CPUs utilized
45,024,760,101 cycles # 3.441 GHz
65,102,895,542 instructions # 1.45 insn per cycle
11,271,673,787 branches # 861.372 M/sec
59,468,979 branch-misses # 0.53% of all branches
12,989.09 msec task-clock # 1.000 CPUs utilized
44,692,719,559 cycles # 3.441 GHz
65,109,984,964 instructions # 1.46 insn per cycle
11,282,136,057 branches # 868.585 M/sec
39,786,942 branch-misses # 0.35% of all branches
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200511101952.1463138-1-npiggin@gmail.com
For powerpc64, redefine the ppc_inst type so both word and prefixed
instructions can be represented. On powerpc32 the type will remain the
same. Update places which had assumed instructions to be 4 bytes long.
Signed-off-by: Jordan Niethe <jniethe5@gmail.com>
Reviewed-by: Alistair Popple <alistair@popple.id.au>
[mpe: Rework the get_user_inst() macros to be parameterised, and don't
assign to the dest if an error occurred. Use CONFIG_PPC64 not
__powerpc64__ in a few places. Address other comments from
Christophe. Fix some sparse complaints.]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20200506034050.24806-24-jniethe5@gmail.com