INVLPG operates on guest virtual address, which are represented by
vcpu->arch.walk_mmu. In nested virtualization scenarios,
kvm_mmu_invlpg() was using the wrong MMU structure; if L2's invlpg were
emulated by L0 (in practice, it hardly happen) when nested two-dimensional
paging is enabled, the call to ->tlb_flush_gva() would be skipped and
the hardware TLB entry would not be invalidated.
Signed-off-by: Lai Jiangshan <laijs@linux.alibaba.com>
Message-Id: <20211124122055.64424-5-jiangshanlai@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 63f5a1909f ("KVM: x86: Alert userspace that KVM_SET_CPUID{,2}
after KVM_RUN is broken") officially deprecated KVM_SET_CPUID{,2} ioctls
after first successful KVM_RUN and promissed to make this sequence forbiden
in 5.16. It's time to fulfil the promise.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20211122175818.608220-3-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fully emulate a guest TLB flush on nested VM-Enter which changes vpid12,
i.e. L2's VPID, instead of simply doing INVVPID to flush real hardware's
TLB entries for vpid02. From L1's perspective, changing L2's VPID is
effectively a TLB flush unless "hardware" has previously cached entries
for the new vpid12. Because KVM tracks only a single vpid12, KVM doesn't
know if the new vpid12 has been used in the past and so must treat it as
a brand new, never been used VPID, i.e. must assume that the new vpid12
represents a TLB flush from L1's perspective.
For example, if L1 and L2 share a CR3, the first VM-Enter to L2 (with a
VPID) is effectively a TLB flush as hardware/KVM has never seen vpid12
and thus can't have cached entries in the TLB for vpid12.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 5c614b3583 ("KVM: nVMX: nested VPID emulation")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Like KVM_REQ_TLB_FLUSH_CURRENT, the GUEST variant needs to be serviced at
nested transitions, as KVM doesn't track requests for L1 vs L2. E.g. if
there's a pending flush when a nested VM-Exit occurs, then the flush was
requested in the context of L2 and needs to be handled before switching
to L1, otherwise the flush for L2 would effectiely be lost.
Opportunistically add a helper to handle CURRENT and GUEST as a pair, the
logic for when they need to be serviced is identical as both requests are
tied to L1 vs. L2, the only difference is the scope of the flush.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 07ffaf343e ("KVM: nVMX: Sync all PGDs on nested transition with shadow paging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush the current VPID when handling KVM_REQ_TLB_FLUSH_GUEST instead of
always flushing vpid01. Any TLB flush that is triggered when L2 is
active is scoped to L2's VPID (if it has one), e.g. if L2 toggles CR4.PGE
and L1 doesn't intercept PGE writes, then KVM's emulation of the TLB
flush needs to be applied to L2's VPID.
Reported-by: Lai Jiangshan <jiangshanlai+lkml@gmail.com>
Fixes: 07ffaf343e ("KVM: nVMX: Sync all PGDs on nested transition with shadow paging")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211125014944.536398-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The capability, albeit present, was never exposed via KVM_CHECK_EXTENSION.
Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Cc: Peter Gonda <pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Synchronize the two calls to kvm_x86_sync_pir_to_irr. The one
in the reenter-guest fast path invoked the callback unconditionally
even if LAPIC is present but disabled. In this case, there are
no interrupts to deliver, and therefore posted interrupts can
be ignored.
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
An uninitialized gfn_to_hva_cache has ghc->len == 0, which causes
the accessors to croak very loudly. While a BUG_ON is definitely
_too_ loud and a bug on its own, there is indeed an issue of using
the caches in such a way that they could not have been initialized,
because ghc->gpa == 0 might match and thus kvm_gfn_to_hva_cache_init
would not be called.
For the vmcs12_cache, the solution is simply to invoke
kvm_gfn_to_hva_cache_init unconditionally: we already know
that the cache does not match the current VMCS pointer.
For the shadow_vmcs12_cache, there is no similar condition
that checks the VMCS link pointer, so invalidate the cache
on VMXON.
Fixes: cee66664dc ("KVM: nVMX: Use a gfn_to_hva_cache for vmptrld")
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reported-by: syzbot+7b7db8bb4db6fd5e157b@syzkaller.appspotmail.com
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix:
WARNING: modpost: vmlinux.o(.text.unlikely+0x64d0): Section mismatch in reference \
from the function prepare_command_line() to the variable .init.data:command_line
The function prepare_command_line() references
the variable __initdata command_line.
This is often because prepare_command_line lacks a __initdata
annotation or the annotation of command_line is wrong.
Apparently some toolchains do different inlining decisions.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YZySgpmBcNNM2qca@zn.tnic
Pull x86 fixes from Thomas Gleixner:
- Move the command line preparation and the early command line parsing
earlier so that the command line parameters which affect
early_reserve_memory(), e.g. efi=nosftreserve, are taken into
account. This was broken when the invocation of
early_reserve_memory() was moved recently.
- Use an atomic type for the SGX page accounting, which is read and
written locklessly, to plug various race conditions related to it.
* tag 'x86-urgent-2021-11-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Fix free page accounting
x86/boot: Pull up cmdline preparation and early param parsing
Pull x86 perf fixes from Thomas Gleixner:
- Remove unneded PEBS disabling when taking LBR snapshots to prevent an
unchecked MSR access error.
- Fix IIO event constraints for Snowridge and Skylake server chips.
* tag 'perf-urgent-2021-11-21' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/perf: Fix snapshot_branch_stack warning in VM
perf/x86/intel/uncore: Fix IIO event constraints for Snowridge
perf/x86/intel/uncore: Fix IIO event constraints for Skylake Server
perf/x86/intel/uncore: Fix filter_tid mask for CHA events on Skylake Server
Pull s390 updates from Heiko Carstens:
- Add missing Kconfig option for ftrace direct multi sample, so it can
be compiled again, and also add s390 support for this sample.
- Update Christian Borntraeger's email address.
- Various fixes for memory layout setup. Besides other this makes it
possible to load shared DCSS segments again.
- Fix copy to user space of swapped kdump oldmem.
- Remove -mstack-guard and -mstack-size compile options when building
vdso binaries. This can happen when CONFIG_VMAP_STACK is disabled and
results in broken vdso code which causes more or less random
exceptions. Also remove the not needed -nostdlib option.
- Fix memory leak on cpu hotplug and return code handling in kexec
code.
- Wire up futex_waitv system call.
- Replace snprintf with sysfs_emit where appropriate.
* tag 's390-5.16-3' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux:
ftrace/samples: add s390 support for ftrace direct multi sample
ftrace/samples: add missing Kconfig option for ftrace direct multi sample
MAINTAINERS: update email address of Christian Borntraeger
s390/kexec: fix memory leak of ipl report buffer
s390/kexec: fix return code handling
s390/dump: fix copying to user-space of swapped kdump oldmem
s390: wire up sys_futex_waitv system call
s390/vdso: filter out -mstack-guard and -mstack-size
s390/vdso: remove -nostdlib compiler flag
s390: replace snprintf in show functions with sysfs_emit
s390/boot: simplify and fix kernel memory layout setup
s390/setup: re-arrange memblock setup
s390/setup: avoid using memblock_enforce_memory_limit
s390/setup: avoid reserving memory above identity mapping
Pull exit-vs-signal handling fixes from Eric Biederman:
"This is a small set of changes where debuggers were no longer able to
intercept synchronous SIGTRAP and SIGSEGV, introduced by the exit
cleanups.
This is essentially the change you suggested with all of i's dotted
and the t's crossed so that ptrace can intercept all of the cases it
has been able to intercept the past, and all of the cases that made it
to exit without giving ptrace a chance still don't give ptrace a
chance"
* 'SA_IMMUTABLE-fixes-for-v5.16-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
signal: Replace force_fatal_sig with force_exit_sig when in doubt
signal: Don't always set SA_IMMUTABLE for forced signals
Recently to prevent issues with SECCOMP_RET_KILL and similar signals
being changed before they are delivered SA_IMMUTABLE was added.
Unfortunately this broke debuggers[1][2] which reasonably expect
to be able to trap synchronous SIGTRAP and SIGSEGV even when
the target process is not configured to handle those signals.
Add force_exit_sig and use it instead of force_fatal_sig where
historically the code has directly called do_exit. This has the
implementation benefits of going through the signal exit path
(including generating core dumps) without the danger of allowing
userspace to ignore or change these signals.
This avoids userspace regressions as older kernels exited with do_exit
which debuggers also can not intercept.
In the future is should be possible to improve the quality of
implementation of the kernel by changing some of these force_exit_sig
calls to force_fatal_sig. That can be done where it matters on
a case-by-case basis with careful analysis.
Reported-by: Kyle Huey <me@kylehuey.com>
Reported-by: kernel test robot <oliver.sang@intel.com>
[1] https://lkml.kernel.org/r/CAP045AoMY4xf8aC_4QU_-j7obuEPYgTcnQQP3Yxk=2X90jtpjw@mail.gmail.com
[2] https://lkml.kernel.org/r/20211117150258.GB5403@xsang-OptiPlex-9020
Fixes: 00b06da29c ("signal: Add SA_IMMUTABLE to ensure forced siganls do not get changed")
Fixes: a3616a3c02 ("signal/m68k: Use force_sigsegv(SIGSEGV) in fpsp040_die")
Fixes: 83a1f27ad7 ("signal/powerpc: On swapcontext failure force SIGSEGV")
Fixes: 9bc508cf07 ("signal/s390: Use force_sigsegv in default_trap_handler")
Fixes: 086ec444f8 ("signal/sparc32: In setup_rt_frame and setup_fram use force_fatal_sig")
Fixes: c317d306d5 ("signal/sparc32: Exit with a fatal signal when try_to_clear_window_buffer fails")
Fixes: 695dd0d634 ("signal/x86: In emulate_vsyscall force a signal instead of calling do_exit")
Fixes: 1fbd60df8a ("signal/vm86_32: Properly send SIGSEGV when the vm86 state cannot be saved.")
Fixes: 941edc5bf1 ("exit/syscall_user_dispatch: Send ordinary signals on failure")
Link: https://lkml.kernel.org/r/871r3dqfv8.fsf_-_@email.froward.int.ebiederm.org
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Kyle Huey <khuey@kylehuey.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Pull KVM fixes from Paolo Bonzini:
"Selftest changes:
- Cleanups for the perf test infrastructure and mapping hugepages
- Avoid contention on mmap_sem when the guests start to run
- Add event channel upcall support to xen_shinfo_test
x86 changes:
- Fixes for Xen emulation
- Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache
- Fixes for migration of 32-bit nested guests on 64-bit hypervisor
- Compilation fixes
- More SEV cleanups
Generic:
- Cap the return value of KVM_CAP_NR_VCPUS to both KVM_CAP_MAX_VCPUS
and num_online_cpus(). Most architectures were only using one of
the two"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
KVM: x86: Cap KVM_CAP_NR_VCPUS by KVM_CAP_MAX_VCPUS
KVM: s390: Cap KVM_CAP_NR_VCPUS by num_online_cpus()
KVM: RISC-V: Cap KVM_CAP_NR_VCPUS by KVM_CAP_MAX_VCPUS
KVM: PPC: Cap KVM_CAP_NR_VCPUS by KVM_CAP_MAX_VCPUS
KVM: MIPS: Cap KVM_CAP_NR_VCPUS by KVM_CAP_MAX_VCPUS
KVM: arm64: Cap KVM_CAP_NR_VCPUS by kvm_arm_default_max_vcpus()
KVM: x86: Assume a 64-bit hypercall for guests with protected state
selftests: KVM: Add /x86_64/sev_migrate_tests to .gitignore
riscv: kvm: fix non-kernel-doc comment block
KVM: SEV: Fix typo in and tweak name of cmd_allowed_from_miror()
KVM: SEV: Drop a redundant setting of sev->asid during initialization
KVM: SEV: WARN if SEV-ES is marked active but SEV is not
KVM: SEV: Set sev_info.active after initial checks in sev_guest_init()
KVM: SEV: Disallow COPY_ENC_CONTEXT_FROM if target has created vCPUs
KVM: Kill kvm_map_gfn() / kvm_unmap_gfn() and gfn_to_pfn_cache
KVM: nVMX: Use a gfn_to_hva_cache for vmptrld
KVM: nVMX: Use kvm_read_guest_offset_cached() for nested VMCS check
KVM: x86/xen: Use sizeof_field() instead of open-coding it
KVM: nVMX: Use kvm_{read,write}_guest_cached() for shadow_vmcs12
KVM: x86/xen: Fix get_attr of KVM_XEN_ATTR_TYPE_SHARED_INFO
...
Currently it is not possible to build the ftrace direct multi example
anymore due to broken config dependencies. Fix this by adding
SAMPLE_FTRACE_DIRECT_MULTI config option.
This broke when merging s390-5.16-1 due to an incorrect merge conflict
resolution proposed by me.
Also rename SAMPLE_FTRACE_MULTI_DIRECT to SAMPLE_FTRACE_DIRECT_MULTI
so it matches the module name.
Fixes: 0b707e572a ("Merge tag 's390-5.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux")
Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20211115195614.3173346-2-hca@linux.ibm.com
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Commit f52447261b ("KVM: irq ack notification") introduced an
ack_notifier() callback in struct kvm_pic and in struct kvm_ioapic
without using them anywhere. Remove those callbacks again.
Signed-off-by: Juergen Gross <jgross@suse.com>
Message-Id: <20211117071617.19504-1-jgross@suse.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When recursively clearing out disconnected pts, the range based TLB
flush in handle_removed_tdp_mmu_page uses the wrong starting GFN,
resulting in the flush mostly missing the affected range. Fix this by
using base_gfn for the flush.
In response to feedback from David Matlack on the RFC version of this
patch, also move a few definitions into the for loop in the function to
prevent unintended references to them in the future.
Fixes: a066e61f13 ("KVM: x86/mmu: Factor out handling of removed page tables")
CC: stable@vger.kernel.org
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20211115211704.2621644-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When processing a hypercall for a guest with protected state, currently
SEV-ES guests, the guest CS segment register can't be checked to
determine if the guest is in 64-bit mode. For an SEV-ES guest, it is
expected that communication between the guest and the hypervisor is
performed to shared memory using the GHCB. In order to use the GHCB, the
guest must have been in long mode, otherwise writes by the guest to the
GHCB would be encrypted and not be able to be comprehended by the
hypervisor.
Create a new helper function, is_64_bit_hypercall(), that assumes the
guest is in 64-bit mode when the guest has protected state, and returns
true, otherwise invoking is_64_bit_mode() to determine the mode. Update
the hypercall related routines to use is_64_bit_hypercall() instead of
is_64_bit_mode().
Add a WARN_ON_ONCE() to is_64_bit_mode() to catch occurences of calls to
this helper function for a guest running with protected state.
Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <e0b20c770c9d0d1403f23d83e785385104211f74.1621878537.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Fixes for Xen emulation
* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache
* Fixes for migration of 32-bit nested guests on 64-bit hypervisor
* Compilation fixes
* More SEV cleanups
Rename cmd_allowed_from_miror() to is_cmd_allowed_from_mirror(), fixing
a typo and making it obvious that the result is a boolean where
false means "not allowed".
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove a fully redundant write to sev->asid during SEV/SEV-ES guest
initialization. The ASID is set a few lines earlier prior to the call to
sev_platform_init(), which doesn't take "sev" as a param, i.e. can't
muck with the ASID barring some truly magical behind-the-scenes code.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if the VM is tagged as SEV-ES but not SEV. KVM relies on SEV and
SEV-ES being set atomically, and guards common flows with "is SEV", i.e.
observing SEV-ES without SEV means KVM has a fatal bug.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set sev_info.active during SEV/SEV-ES activation before calling any code
that can potentially consume sev_info.es_active, e.g. set "active" and
"es_active" as a pair immediately after the initial sanity checks. KVM
generally expects that es_active can be true if and only if active is
true, e.g. sev_asid_new() deliberately avoids sev_es_guest() so that it
doesn't get a false negative. This will allow WARNing in sev_es_guest()
if the VM is tagged as SEV-ES but not SEV.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Using kvm_vcpu_map() for reading from the guest is entirely gratuitous,
when all we do is a single memcpy and unmap it again. Fix it up to use
kvm_read_guest()... but in fact I couldn't bring myself to do that
without also making it use a gfn_to_hva_cache for both that *and* the
copy in the other direction.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211115165030.7422-5-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In commit 319afe6856 ("KVM: xen: do not use struct gfn_to_hva_cache") we
stopped storing this in-kernel as a GPA, and started storing it as a GFN.
Which means we probably should have stopped calling gpa_to_gfn() on it
when userspace asks for it back.
Cc: stable@vger.kernel.org
Fixes: 319afe6856 ("KVM: xen: do not use struct gfn_to_hva_cache")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20211115165030.7422-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Incorporate EFER.LMA into kvm_mmu_extended_role, as it used to compute the
guest root level and is not reflected in kvm_mmu_page_role.level when TDP
is in use. When simply running the guest, it is impossible for EFER.LMA
and kvm_mmu.root_level to get out of sync, as the guest cannot transition
from PAE paging to 64-bit paging without toggling CR0.PG, i.e. without
first bouncing through a different MMU context. And stuffing guest state
via KVM_SET_SREGS{,2} also ensures a full MMU context reset.
However, if KVM_SET_SREGS{,2} is followed by KVM_SET_NESTED_STATE, e.g. to
set guest state when migrating the VM while L2 is active, the vCPU state
will reflect L2, not L1. If L1 is using TDP for L2, then root_mmu will
have been configured using L2's state, despite not being used for L2. If
L2.EFER.LMA != L1.EFER.LMA, and L2 is using PAE paging, then root_mmu will
be configured for guest PAE paging, but will match the mmu_role for 64-bit
paging and cause KVM to not reconfigure root_mmu on the next nested VM-Exit.
Alternatively, the root_mmu's role could be invalidated after a successful
KVM_SET_NESTED_STATE that yields vcpu->arch.mmu != vcpu->arch.root_mmu,
i.e. that switches the active mmu to guest_mmu, but doing so is unnecessarily
tricky, and not even needed if L1 and L2 do have the same role (e.g., they
are both 64-bit guests and run with the same CR4).
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-3-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When loading nested state, don't use check vcpu->arch.efer to get the
L1 host's 64-bit vs. 32-bit state and don't check it for consistency
with respect to VM_EXIT_HOST_ADDR_SPACE_SIZE, as register state in vCPU
may be stale when KVM_SET_NESTED_STATE is called---and architecturally
does not exist. When restoring L2 state in KVM, the CPU is placed in
non-root where nested VMX code has no snapshot of L1 host state: VMX
(conditionally) loads host state fields loaded on VM-exit, but they need
not correspond to the state before entry. A simple case occurs in KVM
itself, where the host RIP field points to vmx_vmexit rather than the
instruction following vmlaunch/vmresume.
However, for the particular case of L1 being in 32- or 64-bit mode
on entry, the exit controls can be treated instead as the source of
truth regarding the state of L1 on entry, and can be used to check
that vmcs12.VM_EXIT_HOST_ADDR_SPACE_SIZE matches vmcs12.HOST_EFER if
vmcs12.VM_EXIT_LOAD_IA32_EFER is set. The consistency check on CPU
EFER vs. vmcs12.VM_EXIT_HOST_ADDR_SPACE_SIZE, instead, happens only
on VM-Enter. That's because, again, there's conceptually no "current"
L1 EFER to check on KVM_SET_NESTED_STATE.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20211115131837.195527-2-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In 64-bit mode, x86 instruction encoding allows us to use the low 8 bits
of any GPR as an 8-bit operand. In 32-bit mode, however, we can only use
the [abcd] registers. For which, GCC has the "q" constraint instead of
the less restrictive "r".
Also fix st->preempted, which is an input/output operand rather than an
input.
Fixes: 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time / preempted status")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <89bf72db1b859990355f9c40713a34e0d2d86c98.camel@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The lack a static declaration currently results in:
arch/x86/kvm/cpuid.c:128:26: warning: no previous prototype for function 'kvm_find_kvm_cpuid_features'
when compiling with "W=1".
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 760849b147 ("KVM: x86: Make sure KVM_CPUID_FEATURES really are KVM_CPUID_FEATURES")
Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Message-Id: <20211115144131.5943-1-pdurrant@amazon.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When running in VM intel_pmu_snapshot_branch_stack triggers WRMSR warning
like:
[ ] unchecked MSR access error: WRMSR to 0x3f1 (tried to write 0x0000000000000000) at rIP: 0xffffffff81011a5b (intel_pmu_snapshot_branch_stack+0x3b/0xd0)
This can be triggered with BPF selftests:
tools/testing/selftests/bpf/test_progs -t get_branch_snapshot
This warning is caused by __intel_pmu_pebs_disable_all() in the VM.
Since it is not necessary to disable PEBS for LBR, remove it from
intel_pmu_snapshot_branch_stack and intel_pmu_snapshot_arch_branch_stack.
Fixes: c22ac2a3d4 ("perf: Enable branch record for software events")
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20211112054510.2667030-1-songliubraving@fb.com
The SGX driver maintains a single global free page counter,
sgx_nr_free_pages, that reflects the number of free pages available
across all NUMA nodes. Correspondingly, a list of free pages is
associated with each NUMA node and sgx_nr_free_pages is updated
every time a page is added or removed from any of the free page
lists. The main usage of sgx_nr_free_pages is by the reclaimer
that runs when it (sgx_nr_free_pages) goes below a watermark
to ensure that there are always some free pages available to, for
example, support efficient page faults.
With sgx_nr_free_pages accessed and modified from a few places
it is essential to ensure that these accesses are done safely but
this is not the case. sgx_nr_free_pages is read without any
protection and updated with inconsistent protection by any one
of the spin locks associated with the individual NUMA nodes.
For example:
CPU_A CPU_B
----- -----
spin_lock(&nodeA->lock); spin_lock(&nodeB->lock);
... ...
sgx_nr_free_pages--; /* NOT SAFE */ sgx_nr_free_pages--;
spin_unlock(&nodeA->lock); spin_unlock(&nodeB->lock);
Since sgx_nr_free_pages may be protected by different spin locks
while being modified from different CPUs, the following scenario
is possible:
CPU_A CPU_B
----- -----
{sgx_nr_free_pages = 100}
spin_lock(&nodeA->lock); spin_lock(&nodeB->lock);
sgx_nr_free_pages--; sgx_nr_free_pages--;
/* LOAD sgx_nr_free_pages = 100 */ /* LOAD sgx_nr_free_pages = 100 */
/* sgx_nr_free_pages-- */ /* sgx_nr_free_pages-- */
/* STORE sgx_nr_free_pages = 99 */ /* STORE sgx_nr_free_pages = 99 */
spin_unlock(&nodeA->lock); spin_unlock(&nodeB->lock);
In the above scenario, sgx_nr_free_pages is decremented from two CPUs
but instead of sgx_nr_free_pages ending with a value that is two less
than it started with, it was only decremented by one while the number
of free pages were actually reduced by two. The consequence of
sgx_nr_free_pages not being protected is that its value may not
accurately reflect the actual number of free pages on the system,
impacting the availability of free pages in support of many flows.
The problematic scenario is when the reclaimer does not run because it
believes there to be sufficient free pages while any attempt to allocate
a page fails because there are no free pages available. In the SGX driver
the reclaimer's watermark is only 32 pages so after encountering the
above example scenario 32 times a user space hang is possible when there
are no more free pages because of repeated page faults caused by no
free pages made available.
The following flow was encountered:
asm_exc_page_fault
...
sgx_vma_fault()
sgx_encl_load_page()
sgx_encl_eldu() // Encrypted page needs to be loaded from backing
// storage into newly allocated SGX memory page
sgx_alloc_epc_page() // Allocate a page of SGX memory
__sgx_alloc_epc_page() // Fails, no free SGX memory
...
if (sgx_should_reclaim(SGX_NR_LOW_PAGES)) // Wake reclaimer
wake_up(&ksgxd_waitq);
return -EBUSY; // Return -EBUSY giving reclaimer time to run
return -EBUSY;
return -EBUSY;
return VM_FAULT_NOPAGE;
The reclaimer is triggered in above flow with the following code:
static bool sgx_should_reclaim(unsigned long watermark)
{
return sgx_nr_free_pages < watermark &&
!list_empty(&sgx_active_page_list);
}
In the problematic scenario there were no free pages available yet the
value of sgx_nr_free_pages was above the watermark. The allocation of
SGX memory thus always failed because of a lack of free pages while no
free pages were made available because the reclaimer is never started
because of sgx_nr_free_pages' incorrect value. The consequence was that
user space kept encountering VM_FAULT_NOPAGE that caused the same
address to be accessed repeatedly with the same result.
Change the global free page counter to an atomic type that
ensures simultaneous updates are done safely. While doing so, move
the updating of the variable outside of the spin lock critical
section to which it does not belong.
Cc: stable@vger.kernel.org
Fixes: 901ddbb9ec ("x86/sgx: Add a basic NUMA allocation scheme to sgx_alloc_epc_page()")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a95a40743bbd3f795b465f30922dde7f1ea9e0eb.1637004094.git.reinette.chatre@intel.com
In vcpu_load_eoi_exitmap(), currently the eoi_exit_bitmap[4] array is
initialized only when Hyper-V context is available, in other path it is
just passed to kvm_x86_ops.load_eoi_exitmap() directly from on the stack,
which would cause unexpected interrupt delivery/handling issues, e.g. an
*old* linux kernel that relies on PIT to do clock calibration on KVM might
randomly fail to boot.
Fix it by passing ioapic_handled_vectors to load_eoi_exitmap() when Hyper-V
context is not available.
Fixes: f2bc14b69c ("KVM: x86: hyper-v: Prepare to meet unallocated Hyper-V context")
Cc: stable@vger.kernel.org
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Huang Le <huangle1@jd.com>
Message-Id: <62115b277dab49ea97da5633f8522daf@jd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check for MSR_HYPERCALL and MSR_VP_INDEX support when probing
for running as a Hyper-V guest instead of waiting until hyperv_init() to
detect the bogus configuration. Add messages to give the admin a heads
up that they are likely running on a broken virtual machine setup.
At best, silently disabling Hyper-V is confusing and difficult to debug,
e.g. the kernel _says_ it's using all these fancy Hyper-V features, but
always falls back to the native versions. At worst, the half baked setup
will crash/hang the kernel.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20211104182239.1302956-3-seanjc@google.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>