Commit Graph

43398 Commits

Author SHA1 Message Date
Linus Torvalds
c5b2063c65 sched/membarrier: reduce the ability to hammer on sys_membarrier
commit 944d5fe50f upstream.

On some systems, sys_membarrier can be very expensive, causing overall
slowdowns for everything.  So put a lock on the path in order to
serialize the accesses to prevent the ability for this to be called at
too high of a frequency and saturate the machine.

Reviewed-and-tested-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Acked-by: Borislav Petkov <bp@alien8.de>
Fixes: 22e4ebb975 ("membarrier: Provide expedited private command")
Fixes: c5f58bd58f ("membarrier: Provide GLOBAL_EXPEDITED command")
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:59 +01:00
Steven Rostedt (Google)
c87a92bdb9 tracing: Inform kmemleak of saved_cmdlines allocation
commit 2394ac4145 upstream.

The allocation of the struct saved_cmdlines_buffer structure changed from:

        s = kmalloc(sizeof(*s), GFP_KERNEL);
	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

to:

	orig_size = sizeof(*s) + val * TASK_COMM_LEN;
	order = get_order(orig_size);
	size = 1 << (order + PAGE_SHIFT);
	page = alloc_pages(GFP_KERNEL, order);
	if (!page)
		return NULL;

	s = page_address(page);
	memset(s, 0, sizeof(*s));

	s->saved_cmdlines = kmalloc_array(TASK_COMM_LEN, val, GFP_KERNEL);

Where that s->saved_cmdlines allocation looks to be a dangling allocation
to kmemleak. That's because kmemleak only keeps track of kmalloc()
allocations. For allocations that use page_alloc() directly, the kmemleak
needs to be explicitly informed about it.

Add kmemleak_alloc() and kmemleak_free() around the page allocation so
that it doesn't give the following false positive:

unreferenced object 0xffff8881010c8000 (size 32760):
  comm "swapper", pid 0, jiffies 4294667296
  hex dump (first 32 bytes):
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
  backtrace (crc ae6ec1b9):
    [<ffffffff86722405>] kmemleak_alloc+0x45/0x80
    [<ffffffff8414028d>] __kmalloc_large_node+0x10d/0x190
    [<ffffffff84146ab1>] __kmalloc+0x3b1/0x4c0
    [<ffffffff83ed7103>] allocate_cmdlines_buffer+0x113/0x230
    [<ffffffff88649c34>] tracer_alloc_buffers.isra.0+0x124/0x460
    [<ffffffff8864a174>] early_trace_init+0x14/0xa0
    [<ffffffff885dd5ae>] start_kernel+0x12e/0x3c0
    [<ffffffff885f5758>] x86_64_start_reservations+0x18/0x30
    [<ffffffff885f582b>] x86_64_start_kernel+0x7b/0x80
    [<ffffffff83a001c3>] secondary_startup_64_no_verify+0x15e/0x16b

Link: https://lore.kernel.org/linux-trace-kernel/87r0hfnr9r.fsf@kernel.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240214112046.09a322d6@gandalf.local.home

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Fixes: 44dc5c41b5 ("tracing: Fix wasted memory in saved_cmdlines logic")
Reported-by: Kalle Valo <kvalo@kernel.org>
Tested-by: Kalle Valo <kvalo@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:58 +01:00
Petr Pavlu
02faad5f52 tracing: Fix HAVE_DYNAMIC_FTRACE_WITH_REGS ifdef
commit bdbddb109c upstream.

Commit a8b9cf62ad ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by
default") attempted to fix an issue with direct trampolines on x86, see
its description for details. However, it wrongly referenced the
HAVE_DYNAMIC_FTRACE_WITH_REGS config option and the problem is still
present.

Add the missing "CONFIG_" prefix for the logic to work as intended.

Link: https://lore.kernel.org/linux-trace-kernel/20240213132434.22537-1-petr.pavlu@suse.com

Fixes: a8b9cf62ad ("ftrace: Fix DIRECT_CALLS to use SAVE_REGS by default")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:58 +01:00
Masami Hiramatsu (Google)
d4d18c003b ftrace: Fix DIRECT_CALLS to use SAVE_REGS by default
commit a8b9cf62ad upstream.

The commit 60c8971899 ("ftrace: Make DIRECT_CALLS work WITH_ARGS
and !WITH_REGS") changed DIRECT_CALLS to use SAVE_ARGS when there
are multiple ftrace_ops at the same function, but since the x86 only
support to jump to direct_call from ftrace_regs_caller, when we set
the function tracer on the same target function on x86, ftrace-direct
does not work as below (this actually works on arm64.)

At first, insmod ftrace-direct.ko to put a direct_call on
'wake_up_process()'.

 # insmod kernel/samples/ftrace/ftrace-direct.ko
 # less trace
...
          <idle>-0       [006] ..s1.   564.686958: my_direct_func: waking up rcu_preempt-17
          <idle>-0       [007] ..s1.   564.687836: my_direct_func: waking up kcompactd0-63
          <idle>-0       [006] ..s1.   564.690926: my_direct_func: waking up rcu_preempt-17
          <idle>-0       [006] ..s1.   564.696872: my_direct_func: waking up rcu_preempt-17
          <idle>-0       [007] ..s1.   565.191982: my_direct_func: waking up kcompactd0-63

Setup a function filter to the 'wake_up_process' too, and enable it.

 # cd /sys/kernel/tracing/
 # echo wake_up_process > set_ftrace_filter
 # echo function > current_tracer
 # less trace
...
          <idle>-0       [006] ..s3.   686.180972: wake_up_process <-call_timer_fn
          <idle>-0       [006] ..s3.   686.186919: wake_up_process <-call_timer_fn
          <idle>-0       [002] ..s3.   686.264049: wake_up_process <-call_timer_fn
          <idle>-0       [002] d.h6.   686.515216: wake_up_process <-kick_pool
          <idle>-0       [002] d.h6.   686.691386: wake_up_process <-kick_pool

Then, only function tracer is shown on x86.
But if you enable 'kprobe on ftrace' event (which uses SAVE_REGS flag)
on the same function, it is shown again.

 # echo 'p wake_up_process' >> dynamic_events
 # echo 1 > events/kprobes/p_wake_up_process_0/enable
 # echo > trace
 # less trace
...
          <idle>-0       [006] ..s2.  2710.345919: p_wake_up_process_0: (wake_up_process+0x4/0x20)
          <idle>-0       [006] ..s3.  2710.345923: wake_up_process <-call_timer_fn
          <idle>-0       [006] ..s1.  2710.345928: my_direct_func: waking up rcu_preempt-17
          <idle>-0       [006] ..s2.  2710.349931: p_wake_up_process_0: (wake_up_process+0x4/0x20)
          <idle>-0       [006] ..s3.  2710.349934: wake_up_process <-call_timer_fn
          <idle>-0       [006] ..s1.  2710.349937: my_direct_func: waking up rcu_preempt-17

To fix this issue, use SAVE_REGS flag for multiple ftrace_ops flag of
direct_call by default.

Link: https://lore.kernel.org/linux-trace-kernel/170484558617.178953.1590516949390270842.stgit@devnote2

Fixes: 60c8971899 ("ftrace: Make DIRECT_CALLS work WITH_ARGS and !WITH_REGS")
Cc: stable@vger.kernel.org
Cc: Florent Revest <revest@chromium.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com> [arm64]
Acked-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:48 +01:00
Vincent Donnefort
f385565bd7 ring-buffer: Clean ring_buffer_poll_wait() error return
commit 66bbea9ed6 upstream.

The return type for ring_buffer_poll_wait() is __poll_t. This is behind
the scenes an unsigned where we can set event bits. In case of a
non-allocated CPU, we do return instead -EINVAL (0xffffffea). Lucky us,
this ends up setting few error bits (EPOLLERR | EPOLLHUP | EPOLLNVAL), so
user-space at least is aware something went wrong.

Nonetheless, this is an incorrect code. Replace that -EINVAL with a
proper EPOLLERR to clean that output. As this doesn't change the
behaviour, there's no need to treat this change as a bug fix.

Link: https://lore.kernel.org/linux-trace-kernel/20240131140955.3322792-1-vdonnefort@google.com

Cc: stable@vger.kernel.org
Fixes: 6721cb6002 ("ring-buffer: Do not poll non allocated cpu buffers")
Signed-off-by: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:47 +01:00
Oleg Nesterov
dede74e05c getrusage: use sig->stats_lock rather than lock_task_sighand()
commit f7ec1cd5cc upstream.

lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call
getrusage() at the same time and the process has NR_THREADS, spin_lock_irq
will spin with irqs disabled O(NR_CPUS * NR_THREADS) time.

Change getrusage() to use sig->stats_lock, it was specifically designed
for this type of use. This way it runs lockless in the likely case.

TODO:
	- Change do_task_stat() to use sig->stats_lock too, then we can
	  remove spin_lock_irq(siglock) in wait_task_zombie().

	- Turn sig->stats_lock into seqcount_rwlock_t, this way the
	  readers in the slow mode won't exclude each other. See
	  https://lore.kernel.org/all/20230913154907.GA26210@redhat.com/

	- stats_lock has to disable irqs because ->siglock can be taken
	  in irq context, it would be very nice to change __exit_signal()
	  to avoid the siglock->stats_lock dependency.

Link: https://lkml.kernel.org/r/20240122155053.GA26214@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dylan Hatch <dylanbhatch@google.com>
Tested-by: Dylan Hatch <dylanbhatch@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:45 +01:00
Oleg Nesterov
03b309a64d getrusage: move thread_group_cputime_adjusted() outside of lock_task_sighand()
commit daa694e413 upstream.

Patch series "getrusage: use sig->stats_lock", v2.


This patch (of 2):

thread_group_cputime() does its own locking, we can safely shift
thread_group_cputime_adjusted() which does another for_each_thread loop
outside of ->siglock protected section.

This is also preparation for the next patch which changes getrusage() to
use stats_lock instead of siglock, thread_group_cputime() takes the same
lock.  With the current implementation recursive read_seqbegin_or_lock()
is fine, thread_group_cputime() can't enter the slow mode if the caller
holds stats_lock, yet this looks more safe and better performance-wise.

Link: https://lkml.kernel.org/r/20240122155023.GA26169@redhat.com
Link: https://lkml.kernel.org/r/20240122155050.GA26205@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reported-by: Dylan Hatch <dylanbhatch@google.com>
Tested-by: Dylan Hatch <dylanbhatch@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:45 +01:00
Tejun Heo
c1f5bae135 Revert "workqueue: Override implicit ordered attribute in workqueue_apply_unbound_cpumask()"
commit aac8a59537 upstream.

This reverts commit ca10d851b9.

The commit allowed workqueue_apply_unbound_cpumask() to clear __WQ_ORDERED
on now removed implicitly ordered workqueues. This was incorrect in that
system-wide config change shouldn't break ordering properties of all
workqueues. The reason why apply_workqueue_attrs() path was allowed to do so
was because it was targeting the specific workqueue - either the workqueue
had WQ_SYSFS set or the workqueue user specifically tried to change
max_active, both of which indicate that the workqueue doesn't need to be
ordered.

The implicitly ordered workqueue promotion was removed by the previous
commit 3bc1e711c2 ("workqueue: Don't implicitly make UNBOUND workqueues w/
@max_active==1 ordered"). However, it didn't update this path and broke
build. Let's revert the commit which was incorrect in the first place which
also fixes build.

Signed-off-by: Tejun Heo <tj@kernel.org>
Fixes: 3bc1e711c2 ("workqueue: Don't implicitly make UNBOUND workqueues w/ @max_active==1 ordered")
Fixes: ca10d851b9 ("workqueue: Override implicit ordered attribute in workqueue_apply_unbound_cpumask()")
Cc: stable@vger.kernel.org # v6.6+
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:41 +01:00
Masami Hiramatsu (Google)
9e847e0b6d tracing/probes: Fix to search structure fields correctly
commit 9704669c38 upstream.

Fix to search a field from the structure which has anonymous union
correctly.
Since the reference `type` pointer was updated in the loop, the search
loop suddenly aborted where it hits an anonymous union. Thus it can not
find the field after the anonymous union. This avoids updating the
cursor `type` pointer in the loop.

Link: https://lore.kernel.org/all/170791694361.389532.10047514554799419688.stgit@devnote2/

Fixes: 302db0f5b3 ("tracing/probes: Add a function to search a member of a struct/union")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:41 +01:00
Masami Hiramatsu (Google)
eaaab299fa tracing/probes: Fix to set arg size and fmt after setting type from BTF
commit 9a571c1e27 upstream.

Since the BTF type setting updates probe_arg::type, the type size
calculation and setting print-fmt should be done after that.
Without this fix, the argument size and print-fmt can be wrong.

Link: https://lore.kernel.org/all/170602218196.215583.6417859469540955777.stgit@devnote2/

Fixes: b576e09701 ("tracing/probes: Support function parameters if BTF is available")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:41 +01:00
Masami Hiramatsu (Google)
f9a10a609c tracing/probes: Fix to show a parse error for bad type for $comm
commit 8c427cc2fa upstream.

Fix to show a parse error for bad type (non-string) for $comm/$COMM and
immediate-string. With this fix, error_log file shows appropriate error
message as below.

 /sys/kernel/tracing # echo 'p vfs_read $comm:u32' >> kprobe_events
sh: write error: Invalid argument
 /sys/kernel/tracing # echo 'p vfs_read \"hoge":u32' >> kprobe_events
sh: write error: Invalid argument
 /sys/kernel/tracing # cat error_log

[   30.144183] trace_kprobe: error: $comm and immediate-string only accepts string type
  Command: p vfs_read $comm:u32
                            ^
[   62.618500] trace_kprobe: error: $comm and immediate-string only accepts string type
  Command: p vfs_read \"hoge":u32
                              ^
Link: https://lore.kernel.org/all/170602215411.215583.2238016352271091852.stgit@devnote2/

Fixes: 3dd1f7f24f ("tracing: probeevent: Fix to make the type of $comm string")
Cc: stable@vger.kernel.org
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:40 +01:00
Thorsten Blum
33e669c322 tracing/synthetic: Fix trace_string() return value
commit 9b6326354c upstream.

Fix trace_string() by assigning the string length to the return variable
which got lost in commit ddeea494a1 ("tracing/synthetic: Use union
instead of casts") and caused trace_string() to always return 0.

Link: https://lore.kernel.org/linux-trace-kernel/20240214220555.711598-1-thorsten.blum@toblux.com

Cc: stable@vger.kernel.org
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Fixes: ddeea494a1 ("tracing/synthetic: Use union instead of casts")
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:40 +01:00
Steven Rostedt (Google)
b8a36f5b18 tracing: Fix wasted memory in saved_cmdlines logic
commit 44dc5c41b5 upstream.

While looking at improving the saved_cmdlines cache I found a huge amount
of wasted memory that should be used for the cmdlines.

The tracing data saves pids during the trace. At sched switch, if a trace
occurred, it will save the comm of the task that did the trace. This is
saved in a "cache" that maps pids to comms and exposed to user space via
the /sys/kernel/tracing/saved_cmdlines file. Currently it only caches by
default 128 comms.

The structure that uses this creates an array to store the pids using
PID_MAX_DEFAULT (which is usually set to 32768). This causes the structure
to be of the size of 131104 bytes on 64 bit machines.

In hex: 131104 = 0x20020, and since the kernel allocates generic memory in
powers of two, the kernel would allocate 0x40000 or 262144 bytes to store
this structure. That leaves 131040 bytes of wasted space.

Worse, the structure points to an allocated array to store the comm names,
which is 16 bytes times the amount of names to save (currently 128), which
is 2048 bytes. Instead of allocating a separate array, make the structure
end with a variable length string and use the extra space for that.

This is similar to a recommendation that Linus had made about eventfs_inode names:

  https://lore.kernel.org/all/20240130190355.11486-5-torvalds@linux-foundation.org/

Instead of allocating a separate string array to hold the saved comms,
have the structure end with: char saved_cmdlines[]; and round up to the
next power of two over sizeof(struct saved_cmdline_buffers) + num_cmdlines * TASK_COMM_LEN
It will use this extra space for the saved_cmdline portion.

Now, instead of saving only 128 comms by default, by using this wasted
space at the end of the structure it can save over 8000 comms and even
saves space by removing the need for allocating the other array.

Link: https://lore.kernel.org/linux-trace-kernel/20240209063622.1f7b6d5f@rorschach.local.home

Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Vincent Donnefort <vdonnefort@google.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Cc: Mete Durlu <meted@linux.ibm.com>
Fixes: 939c7a4f04 ("tracing: Introduce saved_cmdlines_size file")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:40 +01:00
Daniel Bristot de Oliveira
2354d29986 tracing/timerlat: Move hrtimer_init to timerlat_fd open()
commit 1389358bb0 upstream.

Currently, the timerlat's hrtimer is initialized at the first read of
timerlat_fd, and destroyed at close(). It works, but it causes an error
if the user program open() and close() the file without reading.

Here's an example:

 # echo NO_OSNOISE_WORKLOAD > /sys/kernel/debug/tracing/osnoise/options
 # echo timerlat > /sys/kernel/debug/tracing/current_tracer

 # cat <<EOF > ./timerlat_load.py
 # !/usr/bin/env python3

 timerlat_fd = open("/sys/kernel/tracing/osnoise/per_cpu/cpu0/timerlat_fd", 'r')
 timerlat_fd.close();
 EOF

 # ./taskset -c 0 ./timerlat_load.py
<BOOM>

 BUG: kernel NULL pointer dereference, address: 0000000000000010
 #PF: supervisor read access in kernel mode
 #PF: error_code(0x0000) - not-present page
 PGD 0 P4D 0
 Oops: 0000 [#1] PREEMPT SMP NOPTI
 CPU: 1 PID: 2673 Comm: python3 Not tainted 6.6.13-200.fc39.x86_64 #1
 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39 04/01/2014
 RIP: 0010:hrtimer_active+0xd/0x50
 Code: 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 48 8b 57 30 <8b> 42 10 a8 01 74 09 f3 90 8b 42 10 a8 01 75 f7 80 7f 38 00 75 1d
 RSP: 0018:ffffb031009b7e10 EFLAGS: 00010286
 RAX: 000000000002db00 RBX: ffff9118f786db08 RCX: 0000000000000000
 RDX: 0000000000000000 RSI: ffff9117a0e64400 RDI: ffff9118f786db08
 RBP: ffff9118f786db80 R08: ffff9117a0ddd420 R09: ffff9117804d4f70
 R10: 0000000000000000 R11: 0000000000000000 R12: ffff9118f786db08
 R13: ffff91178fdd5e20 R14: ffff9117840978c0 R15: 0000000000000000
 FS:  00007f2ffbab1740(0000) GS:ffff9118f7840000(0000) knlGS:0000000000000000
 CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
 CR2: 0000000000000010 CR3: 00000001b402e000 CR4: 0000000000750ee0
 PKRU: 55555554
 Call Trace:
  <TASK>
  ? __die+0x23/0x70
  ? page_fault_oops+0x171/0x4e0
  ? srso_alias_return_thunk+0x5/0x7f
  ? avc_has_extended_perms+0x237/0x520
  ? exc_page_fault+0x7f/0x180
  ? asm_exc_page_fault+0x26/0x30
  ? hrtimer_active+0xd/0x50
  hrtimer_cancel+0x15/0x40
  timerlat_fd_release+0x48/0xe0
  __fput+0xf5/0x290
  __x64_sys_close+0x3d/0x80
  do_syscall_64+0x60/0x90
  ? srso_alias_return_thunk+0x5/0x7f
  ? __x64_sys_ioctl+0x72/0xd0
  ? srso_alias_return_thunk+0x5/0x7f
  ? syscall_exit_to_user_mode+0x2b/0x40
  ? srso_alias_return_thunk+0x5/0x7f
  ? do_syscall_64+0x6c/0x90
  ? srso_alias_return_thunk+0x5/0x7f
  ? exit_to_user_mode_prepare+0x142/0x1f0
  ? srso_alias_return_thunk+0x5/0x7f
  ? syscall_exit_to_user_mode+0x2b/0x40
  ? srso_alias_return_thunk+0x5/0x7f
  ? do_syscall_64+0x6c/0x90
  entry_SYSCALL_64_after_hwframe+0x6e/0xd8
 RIP: 0033:0x7f2ffb321594
 Code: 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa 80 3d d5 cd 0d 00 00 74 13 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 3c c3 0f 1f 00 55 48 89 e5 48 83 ec 10 89 7d
 RSP: 002b:00007ffe8d8eef18 EFLAGS: 00000202 ORIG_RAX: 0000000000000003
 RAX: ffffffffffffffda RBX: 00007f2ffba4e668 RCX: 00007f2ffb321594
 RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
 RBP: 00007ffe8d8eef40 R08: 0000000000000000 R09: 0000000000000000
 R10: 55c926e3167eae79 R11: 0000000000000202 R12: 0000000000000003
 R13: 00007ffe8d8ef030 R14: 0000000000000000 R15: 00007f2ffba4e668
  </TASK>
 CR2: 0000000000000010
 ---[ end trace 0000000000000000 ]---

Move hrtimer_init to timerlat_fd open() to avoid this problem.

Link: https://lore.kernel.org/linux-trace-kernel/7324dd3fc0035658c99b825204a66049389c56e3.1706798888.git.bristot@kernel.org

Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: stable@vger.kernel.org
Fixes: e88ed227f6 ("tracing/timerlat: Add user-space interface")
Signed-off-by: Daniel Bristot de Oliveira <bristot@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:40 +01:00
Masami Hiramatsu (Google)
4b001ef14b tracing/trigger: Fix to return error if failed to alloc snapshot
commit 0958b33ef5 upstream.

Fix register_snapshot_trigger() to return error code if it failed to
allocate a snapshot instead of 0 (success). Unless that, it will register
snapshot trigger without an error.

Link: https://lore.kernel.org/linux-trace-kernel/170622977792.270660.2789298642759362200.stgit@devnote2

Fixes: 0bbe7f7199 ("tracing: Fix the race between registering 'snapshot' event trigger and triggering 'snapshot' operation")
Cc: stable@vger.kernel.org
Cc: Vincent Donnefort <vdonnefort@google.com>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:51:29 +01:00
Frederic Weisbecker
6424f6ebde hrtimer: Report offline hrtimer enqueue
commit dad6a09f31 upstream.

The hrtimers migration on CPU-down hotplug process has been moved
earlier, before the CPU actually goes to die. This leaves a small window
of opportunity to queue an hrtimer in a blind spot, leaving it ignored.

For example a practical case has been reported with RCU waking up a
SCHED_FIFO task right before the CPUHP_AP_IDLE_DEAD stage, queuing that
way a sched/rt timer to the local offline CPU.

Make sure such situations never go unnoticed and warn when that happens.

Fixes: 5c0930ccaa ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240129235646.3171983-4-boqun.feng@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-16 19:14:29 +01:00
Peter Zijlstra
bb94033815 perf: Fix the nr_addr_filters fix
[ Upstream commit 388a1fb7da ]

Thomas reported that commit 652ffc2104 ("perf/core: Fix narrow
startup race when creating the perf nr_addr_filters sysfs file") made
the entire attribute group vanish, instead of only the nr_addr_filters
attribute.

Additionally a stray return.

Insufficient coffee was involved with both writing and merging the
patch.

Fixes: 652ffc2104 ("perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file")
Reported-by: Thomas Richter <tmricht@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Thomas Richter <tmricht@linux.ibm.com>
Link: https://lkml.kernel.org/r/20231122100756.GP8262@noisy.programming.kicks-ass.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:17:06 +00:00
Alexei Starovoitov
450371ed5b x86/cfi,bpf: Fix bpf_exception_cb() signature
[ Upstream commit 852486b35f ]

As per the earlier patches, BPF sub-programs have bpf_callback_t
signature and CFI expects callers to have matching signature. This is
violated by bpf_prog_aux::bpf_exception_cb().

[peterz: Changelog]
Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/CAADnVQ+Z7UcXXBBhMubhcMM=R-dExk-uHtfOLtoLxQ1XxEpqEA@mail.gmail.com
Link: https://lore.kernel.org/r/20231215092707.910319166@infradead.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:54 +00:00
Hou Tao
fe77396943 bpf: Set uattr->batch.count as zero before batched update or deletion
[ Upstream commit 06e5c999f1 ]

generic_map_{delete,update}_batch() doesn't set uattr->batch.count as
zero before it tries to allocate memory for key. If the memory
allocation fails, the value of uattr->batch.count will be incorrect.

Fix it by setting uattr->batch.count as zero beore batched update or
deletion.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231208102355.2628918-6-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:52 +00:00
Hou Tao
776c56ef11 bpf: Set need_defer as false when clearing fd array during map free
[ Upstream commit 79d93b3c6f ]

Both map deletion operation, map release and map free operation use
fd_array_map_delete_elem() to remove the element from fd array and
need_defer is always true in fd_array_map_delete_elem(). For the map
deletion operation and map release operation, need_defer=true is
necessary, because the bpf program, which accesses the element in fd
array, may still alive. However for map free operation, it is certain
that the bpf program which owns the fd array has already been exited, so
setting need_defer as false is appropriate for map free operation.

So fix it by adding need_defer parameter to bpf_fd_array_map_clear() and
adding a new helper __fd_array_map_delete_elem() to handle the map
deletion, map release and map free operations correspondingly.

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-4-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:51 +00:00
Hou Tao
c7f1b6146f bpf: Check rcu_read_lock_trace_held() before calling bpf map helpers
[ Upstream commit 169410eba2 ]

These three bpf_map_{lookup,update,delete}_elem() helpers are also
available for sleepable bpf program, so add the corresponding lock
assertion for sleepable bpf program, otherwise the following warning
will be reported when a sleepable bpf program manipulates bpf map under
interpreter mode (aka bpf_jit_enable=0):

  WARNING: CPU: 3 PID: 4985 at kernel/bpf/helpers.c:40 ......
  CPU: 3 PID: 4985 Comm: test_progs Not tainted 6.6.0+ #2
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
  RIP: 0010:bpf_map_lookup_elem+0x54/0x60
  ......
  Call Trace:
   <TASK>
   ? __warn+0xa5/0x240
   ? bpf_map_lookup_elem+0x54/0x60
   ? report_bug+0x1ba/0x1f0
   ? handle_bug+0x40/0x80
   ? exc_invalid_op+0x18/0x50
   ? asm_exc_invalid_op+0x1b/0x20
   ? __pfx_bpf_map_lookup_elem+0x10/0x10
   ? rcu_lockdep_current_cpu_online+0x65/0xb0
   ? rcu_is_watching+0x23/0x50
   ? bpf_map_lookup_elem+0x54/0x60
   ? __pfx_bpf_map_lookup_elem+0x10/0x10
   ___bpf_prog_run+0x513/0x3b70
   __bpf_prog_run32+0x9d/0xd0
   ? __bpf_prog_enter_sleepable_recur+0xad/0x120
   ? __bpf_prog_enter_sleepable_recur+0x3e/0x120
   bpf_trampoline_6442580665+0x4d/0x1000
   __x64_sys_getpgid+0x5/0x30
   ? do_syscall_64+0x36/0xb0
   entry_SYSCALL_64_after_hwframe+0x6e/0x76
   </TASK>

Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231204140425.1480317-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:51 +00:00
Chris Riches
aa7f84f662 audit: Send netlink ACK before setting connection in auditd_set
[ Upstream commit 022732e3d8 ]

When auditd_set sets the auditd_conn pointer, audit messages can
immediately be put on the socket by other kernel threads. If the backlog
is large or the rate is high, this can immediately fill the socket
buffer. If the audit daemon requested an ACK for this operation, a full
socket buffer causes the ACK to get dropped, also setting ENOBUFS on the
socket.

To avoid this race and ensure ACKs get through, fast-track the ACK in
this specific case to ensure it is sent before auditd_conn is set.

Signed-off-by: Chris Riches <chris.riches@nutanix.com>
[PM: fix some tab vs space damage]
Signed-off-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:45 +00:00
Vincent Guittot
c8b3ed0053 sched/fair: Fix tg->load when offlining a CPU
[ Upstream commit f60a631ab9 ]

When a CPU is taken offline, the contribution of its cfs_rqs to task_groups'
load may remain and will negatively impact the calculation of the share of
the online CPUs.

To fix this bug, clear the contribution of an offlining CPU to task groups'
load and skip its contribution while it is inactive.

Here's the reproducer of the anomaly, by Imran Khan:

	"So far I have encountered only one rather lengthy way of reproducing this issue,
	which is as follows:

	1. Take a KVM guest (booted with 4 CPUs and can be scaled up to 124 CPUs) and
	   create 2 custom cgroups: /sys/fs/cgroup/cpu/test_group_1 and /sys/fs/cgroup/
	   cpu/test_group_2

	2. Assign a CPU intensive workload to each of these cgroups and start the
	   workload.

	For my tests I am using following app:

	int main(int argc, char *argv[])
	{
		unsigned long count, i, val;
		if (argc != 2) {
		      printf("usage: ./a.out <number of random nums to generate> \n");
		      return 0;
		}

		count = strtoul(argv[1], NULL, 10);

		printf("Generating %lu random numbers \n", count);
		for (i = 0; i < count; i++) {
			val = rand();
			val = val % 2;
			//usleep(1);
		}
		printf("Generated %lu random numbers \n", count);
		return 0;
	}

	Also since the system is booted with 4 CPUs, in order to completely load the
	system I am also launching 4 instances of same test app under:

	   /sys/fs/cgroup/cpu/

	3. We can see that both of the cgroups get similar CPU time:

        # systemd-cgtop --depth 1
	Path                                 Tasks    %CPU  Memory  Input/s    Output/s
	/                                      659      -     5.5G        -        -
	/system.slice                            -      -     5.7G        -        -
	/test_group_1                            4      -        -        -        -
	/test_group_2                            3      -        -        -        -
	/user.slice                             31      -    56.5M        -        -

	Path                                 Tasks   %CPU   Memory  Input/s    Output/s
	/                                      659  394.6     5.5G        -        -
	/test_group_2                            3   65.7        -        -        -
	/user.slice                             29   55.1    48.0M        -        -
	/test_group_1                            4   47.3        -        -        -
	/system.slice                            -    2.2     5.7G        -        -

	Path                                 Tasks  %CPU    Memory  Input/s    Output/s
	/                                      659  394.8     5.5G        -        -
	/test_group_1                            4   62.9        -        -        -
	/user.slice                             28   44.9    54.2M        -        -
	/test_group_2                            3   44.7        -        -        -
	/system.slice                            -    0.9     5.7G        -        -

	Path                                 Tasks  %CPU    Memory  Input/s     Output/s
	/                                      659  394.4     5.5G        -        -
	/test_group_2                            3   58.8        -        -        -
	/test_group_1                            4   51.9        -        -        -
	/user.slice                              30   39.3    59.6M        -        -
	/system.slice                            -    1.9     5.7G        -        -

	Path                                 Tasks  %CPU     Memory  Input/s    Output/s
	/                                      659  394.7     5.5G        -        -
	/test_group_1                            4   60.9        -        -        -
	/test_group_2                            3   57.9        -        -        -
	/user.slice                             28   43.5    36.9M        -        -
	/system.slice                            -    3.0     5.7G        -        -

	Path                                 Tasks  %CPU     Memory  Input/s     Output/s
	/                                      659  395.0     5.5G        -        -
	/test_group_1                            4   66.8        -        -        -
	/test_group_2                            3   56.3        -        -        -
	/user.slice                             29   43.1    51.8M        -        -
	/system.slice                            -    0.7     5.7G        -        -

	4. Now move systemd-udevd to one of these test groups, say test_group_1, and
	   perform scale up to 124 CPUs followed by scale down back to 4 CPUs from the
	   host side.

	5. Run the same workload i.e 4 instances of CPU hogger under /sys/fs/cgroup/cpu
	   and one instance of  CPU hogger each in /sys/fs/cgroup/cpu/test_group_1 and
	   /sys/fs/cgroup/test_group_2.

	It can be seen that test_group_1 (the one where systemd-udevd was moved) is getting
	much less CPU time than the test_group_2, even though at this point of time both of
	these groups have only CPU hogger running:

        # systemd-cgtop --depth 1
	Path                                   Tasks   %CPU   Memory  Input/s   Output/s
	/                                      1219     -     5.4G        -        -
	/system.slice                           -       -     5.6G        -        -
	/test_group_1                           4       -        -        -        -
	/test_group_2                           3       -        -        -        -
	/user.slice                            26       -    91.3M        -        -

	Path                                   Tasks  %CPU     Memory  Input/s   Output/s
	/                                      1221  394.3     5.4G        -        -
	/test_group_2                             3   82.7        -        -        -
	/test_group_1                             4   14.3        -        -        -
	/system.slice                             -    0.8     5.6G        -        -
	/user.slice                              26    0.4    91.2M        -        -

	Path                                   Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  394.6     5.4G        -        -
	/test_group_2                             3   67.4        -        -        -
	/system.slice                             -   24.6     5.6G        -        -
	/test_group_1                             4   12.5        -        -        -
	/user.slice                              26    0.4    91.2M        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                     1221  395.2     5.4G        -        -
	/test_group_2                            3   60.9        -        -        -
	/system.slice                            -   27.9     5.6G        -        -
	/test_group_1                            4   12.2        -        -        -
	/user.slice                             26    0.4    91.2M        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                     1221  395.2     5.4G        -        -
	/test_group_2                            3   69.4        -        -        -
	/test_group_1                            4   13.9        -        -        -
	/user.slice                             28    1.6    92.0M        -        -
	/system.slice                            -    1.0     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.6     5.4G        -        -
	/test_group_2                             3   59.3        -        -        -
	/test_group_1                             4   14.1        -        -        -
	/user.slice                              28    1.3    92.2M        -        -
	/system.slice                             -    0.7     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.5     5.4G        -        -
	/test_group_2                            3   67.2        -        -        -
	/test_group_1                            4   11.5        -        -        -
	/user.slice                             28    1.3    92.5M        -        -
	/system.slice                            -    0.6     5.6G        -        -

	Path                                  Tasks  %CPU    Memory  Input/s    Output/s
	/                                      1221  395.1     5.4G        -        -
	/test_group_2                             3   76.8        -        -        -
	/test_group_1                             4   12.9        -        -        -
	/user.slice                              28    1.3    92.8M        -        -
	/system.slice                             -    1.2     5.6G        -        -

	From sched_debug data it can be seen that in bad case the load.weight of per-CPU
	sched entities corresponding to test_group_1 has reduced significantly and
	also load_avg of test_group_1 remains much higher than that of test_group_2,
	even though systemd-udevd stopped running long time back and at this point of
	time both cgroups just have the CPU hogger app as running entity."

[ mingo: Added details from the original discussion, plus minor edits to the patch. ]

Reported-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Imran Khan <imran.f.khan@oracle.com>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Imran Khan <imran.f.khan@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Link: https://lore.kernel.org/r/20231223111545.62135-1-vincent.guittot@linaro.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:45 +00:00
Greg KH
07786d86e6 perf/core: Fix narrow startup race when creating the perf nr_addr_filters sysfs file
[ Upstream commit 652ffc2104 ]

Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/2023061204-decal-flyable-6090@gregkh
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:45 +00:00
Raghavendra K T
f1c4ed0b5f sched/numa: Fix mm numa_scan_seq based unconditional scan
[ Upstream commit 84db47ca71 ]

Since commit fc137c0dda ("sched/numa: enhance vma scanning logic")

NUMA Balancing allows updating PTEs to trap NUMA hinting faults if the
task had previously accessed VMA. However unconditional scan of VMAs are
allowed during initial phase of VMA creation until process's
mm numa_scan_seq reaches 2 even though current task had not accessed VMA.

Rationale:
 - Without initial scan subsequent PTE update may never happen.
 - Give fair opportunity to all the VMAs to be scanned and subsequently
understand the access pattern of all the VMAs.

But it has a corner case where, if a VMA is created after some time,
process's mm numa_scan_seq could be already greater than 2.

For e.g., values of mm numa_scan_seq when VMAs are created by running
mmtest autonuma benchmark briefly looks like:
start_seq=0 : 459
start_seq=2 : 138
start_seq=3 : 144
start_seq=4 : 8
start_seq=8 : 1
start_seq=9 : 1
This results in no unconditional PTE updates for those VMAs created after
some time.

Fix:
 - Note down the initial value of mm numa_scan_seq in per VMA start_seq.
 - Allow unconditional scan till start_seq + 2.

Result:
SUT: AMD EPYC Milan with 2 NUMA nodes 256 cpus.
base kernel: upstream 6.6-rc6 with Mels patches [1] applied.

kernbench
==========		base                  patched %gain
Amean    elsp-128      165.09 ( 0.00%)      164.78 *   0.19%*

Duration User       41404.28    41375.08
Duration System      9862.22     9768.48
Duration Elapsed      519.87      518.72

Ops NUMA PTE updates           1041416.00      831536.00
Ops NUMA hint faults            263296.00      220966.00
Ops NUMA pages migrated         258021.00      212769.00
Ops AutoNUMA cost                 1328.67        1114.69

autonumabench

NUMA01_THREADLOCAL
==================
Amean  elsp-NUMA01_THREADLOCAL   81.79 (0.00%)  67.74 *  17.18%*

Duration User       54832.73    47379.67
Duration System        75.00      185.75
Duration Elapsed      576.72      476.09

Ops NUMA PTE updates                  394429.00    11121044.00
Ops NUMA hint faults                    1001.00     8906404.00
Ops NUMA pages migrated                  288.00     2998694.00
Ops AutoNUMA cost                          7.77       44666.84

Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Link: https://lore.kernel.org/r/2ea7cbce80ac7c62e90cbfb9653a7972f902439f.1697816692.git.raghavendra.kt@amd.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-02-05 20:16:45 +00:00
Tim Chen
155a09d38b tick/sched: Preserve number of idle sleeps across CPU hotplug events
commit 9a574ea906 upstream.

Commit 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs
CPU hotplug") preserved total idle sleep time and iowait sleeptime across
CPU hotplug events.

Similar reasoning applies to the number of idle calls and idle sleeps to
get the proper average of sleep time per idle invocation.

Preserve those fields too.

Fixes: 71fee48f ("tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug")
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122233534.3094238-1-tim.c.chen@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:21:21 -08:00
Jiri Wiesner
4e5bed8707 clocksource: Skip watchdog check for large watchdog intervals
commit 6446495535 upstream.

There have been reports of the watchdog marking clocksources unstable on
machines with 8 NUMA nodes:

  clocksource: timekeeping watchdog on CPU373:
  Marking clocksource 'tsc' as unstable because the skew is too large:
  clocksource:   'hpet' wd_nsec: 14523447520
  clocksource:   'tsc'  cs_nsec: 14524115132

The measured clocksource skew - the absolute difference between cs_nsec
and wd_nsec - was 668 microseconds:

  cs_nsec - wd_nsec = 14524115132 - 14523447520 = 667612

The kernel used 200 microseconds for the uncertainty_margin of both the
clocksource and watchdog, resulting in a threshold of 400 microseconds (the
md variable). Both the cs_nsec and the wd_nsec value indicate that the
readout interval was circa 14.5 seconds.  The observed behaviour is that
watchdog checks failed for large readout intervals on 8 NUMA node
machines. This indicates that the size of the skew was directly proportinal
to the length of the readout interval on those machines. The measured
clocksource skew, 668 microseconds, was evaluated against a threshold (the
md variable) that is suited for readout intervals of roughly
WATCHDOG_INTERVAL, i.e. HZ >> 1, which is 0.5 second.

The intention of 2e27e793e2 ("clocksource: Reduce clocksource-skew
threshold") was to tighten the threshold for evaluating skew and set the
lower bound for the uncertainty_margin of clocksources to twice
WATCHDOG_MAX_SKEW. Later in c37e85c135 ("clocksource: Loosen clocksource
watchdog constraints"), the WATCHDOG_MAX_SKEW constant was increased to
125 microseconds to fit the limit of NTP, which is able to use a
clocksource that suffers from up to 500 microseconds of skew per second.
Both the TSC and the HPET use default uncertainty_margin. When the
readout interval gets stretched the default uncertainty_margin is no
longer a suitable lower bound for evaluating skew - it imposes a limit
that is far stricter than the skew with which NTP can deal.

The root causes of the skew being directly proportinal to the length of
the readout interval are:

  * the inaccuracy of the shift/mult pairs of clocksources and the watchdog
  * the conversion to nanoseconds is imprecise for large readout intervals

Prevent this by skipping the current watchdog check if the readout
interval exceeds 2 * WATCHDOG_INTERVAL. Considering the maximum readout
interval of 2 * WATCHDOG_INTERVAL, the current default uncertainty margin
(of the TSC and HPET) corresponds to a limit on clocksource skew of 250
ppm (microseconds of skew per second).  To keep the limit imposed by NTP
(500 microseconds of skew per second) for all possible readout intervals,
the margins would have to be scaled so that the threshold value is
proportional to the length of the actual readout interval.

As for why the readout interval may get stretched: Since the watchdog is
executed in softirq context the expiration of the watchdog timer can get
severely delayed on account of a ksoftirqd thread not getting to run in a
timely manner. Surely, a system with such belated softirq execution is not
working well and the scheduling issue should be looked into but the
clocksource watchdog should be able to deal with it accordingly.

Fixes: 2e27e793e2 ("clocksource: Reduce clocksource-skew threshold")
Suggested-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Jiri Wiesner <jwiesner@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Feng Tang <feng.tang@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122172350.GA740@incl
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:21:21 -08:00
Dawei Li
7e4a79e6d9 genirq: Initialize resend_node hlist for all interrupt descriptors
commit b184c8c288 upstream.

For a CONFIG_SPARSE_IRQ=n kernel, early_irq_init() is supposed to
initialize all interrupt descriptors.

It does except for irq_desc::resend_node, which ia only initialized for the
first descriptor.

Use the indexed decriptor and not the base pointer to address that.

Fixes: bc06a9e087 ("genirq: Use hlist for managing resend handlers")
Signed-off-by: Dawei Li <dawei.li@shingroup.cn>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240122085716.2999875-5-dawei.li@shingroup.cn
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:21:21 -08:00
Sebastian Andrzej Siewior
0745fef8a9 futex: Prevent the reuse of stale pi_state
[ Upstream commit e626cb02ee ]

Jiri Slaby reported a futex state inconsistency resulting in -EINVAL during
a lock operation for a PI futex. It requires that the a lock process is
interrupted by a timeout or signal:

  T1 Owns the futex in user space.

  T2 Tries to acquire the futex in kernel (futex_lock_pi()). Allocates a
     pi_state and attaches itself to it.

  T2 Times out and removes its rt_waiter from the rt_mutex. Drops the
     rtmutex lock and tries to acquire the hash bucket lock to remove
     the futex_q. The lock is contended and T2 schedules out.

  T1 Unlocks the futex (futex_unlock_pi()). Finds a futex_q but no
     rt_waiter. Unlocks the futex (do_uncontended) and makes it available
     to user space.

  T3 Acquires the futex in user space.

  T4 Tries to acquire the futex in kernel (futex_lock_pi()). Finds the
     existing futex_q of T2 and tries to attach itself to the existing
     pi_state.  This (attach_to_pi_state()) fails with -EINVAL because uval
     contains the TID of T3 but pi_state points to T1.

It's incorrect to unlock the futex and make it available for user space to
acquire as long as there is still an existing state attached to it in the
kernel.

T1 cannot hand over the futex to T2 because T2 already gave up and started
to clean up and is blocked on the hash bucket lock, so T2's futex_q with
the pi_state pointing to T1 is still queued.

T2 observes the futex_q, but ignores it as there is no waiter on the
corresponding rt_mutex and takes the uncontended path which allows the
subsequent caller of futex_lock_pi() (T4) to observe that stale state.

To prevent this the unlock path must dequeue all futex_q entries which
point to the same pi_state when there is no waiter on the rt mutex. This
requires obviously to make the dequeue conditional in the locking path to
prevent a double dequeue. With that it's guaranteed that user space cannot
observe an uncontended futex which has kernel state attached.

Fixes: fbeb558b0d ("futex/pi: Fix recursive rt_mutex waiter state")
Reported-by: Jiri Slaby <jirislaby@kernel.org>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jiri Slaby <jirislaby@kernel.org>
Link: https://lore.kernel.org/r/20240118115451.0TkD_ZhB@linutronix.de
Closes: https://lore.kernel.org/all/4611bcf2-44d0-4c34-9b84-17406f881003@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-31 16:21:18 -08:00
Frederic Weisbecker
b01ccd9f1c rcu: Defer RCU kthreads wakeup when CPU is dying
[ Upstream commit e787644caf ]

When the CPU goes idle for the last time during the CPU down hotplug
process, RCU reports a final quiescent state for the current CPU. If
this quiescent state propagates up to the top, some tasks may then be
woken up to complete the grace period: the main grace period kthread
and/or the expedited main workqueue (or kworker).

If those kthreads have a SCHED_FIFO policy, the wake up can indirectly
arm the RT bandwith timer to the local offline CPU. Since this happens
after hrtimers have been migrated at CPUHP_AP_HRTIMERS_DYING stage, the
timer gets ignored. Therefore if the RCU kthreads are waiting for RT
bandwidth to be available, they may never be actually scheduled.

This triggers TREE03 rcutorture hangs:

	 rcu: INFO: rcu_preempt self-detected stall on CPU
	 rcu:     4-...!: (1 GPs behind) idle=9874/1/0x4000000000000000 softirq=0/0 fqs=20 rcuc=21071 jiffies(starved)
	 rcu:     (t=21035 jiffies g=938281 q=40787 ncpus=6)
	 rcu: rcu_preempt kthread starved for 20964 jiffies! g938281 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x0 ->cpu=0
	 rcu:     Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
	 rcu: RCU grace-period kthread stack dump:
	 task:rcu_preempt     state:R  running task     stack:14896 pid:14    tgid:14    ppid:2      flags:0x00004000
	 Call Trace:
	  <TASK>
	  __schedule+0x2eb/0xa80
	  schedule+0x1f/0x90
	  schedule_timeout+0x163/0x270
	  ? __pfx_process_timeout+0x10/0x10
	  rcu_gp_fqs_loop+0x37c/0x5b0
	  ? __pfx_rcu_gp_kthread+0x10/0x10
	  rcu_gp_kthread+0x17c/0x200
	  kthread+0xde/0x110
	  ? __pfx_kthread+0x10/0x10
	  ret_from_fork+0x2b/0x40
	  ? __pfx_kthread+0x10/0x10
	  ret_from_fork_asm+0x1b/0x30
	  </TASK>

The situation can't be solved with just unpinning the timer. The hrtimer
infrastructure and the nohz heuristics involved in finding the best
remote target for an unpinned timer would then also need to handle
enqueues from an offline CPU in the most horrendous way.

So fix this on the RCU side instead and defer the wake up to an online
CPU if it's too late for the local one.

Reported-by: Paul E. McKenney <paulmck@kernel.org>
Fixes: 5c0930ccaa ("hrtimers: Push pending hrtimers away from outgoing CPU earlier")
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-31 16:21:09 -08:00
Petr Pavlu
bf4aeff7da tracing: Ensure visibility when inserting an element into tracing_map
[ Upstream commit 2b44760609 ]

Running the following two commands in parallel on a multi-processor
AArch64 machine can sporadically produce an unexpected warning about
duplicate histogram entries:

 $ while true; do
     echo hist:key=id.syscall:val=hitcount > \
       /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/trigger
     cat /sys/kernel/debug/tracing/events/raw_syscalls/sys_enter/hist
     sleep 0.001
   done
 $ stress-ng --sysbadaddr $(nproc)

The warning looks as follows:

[ 2911.172474] ------------[ cut here ]------------
[ 2911.173111] Duplicates detected: 1
[ 2911.173574] WARNING: CPU: 2 PID: 12247 at kernel/trace/tracing_map.c:983 tracing_map_sort_entries+0x3e0/0x408
[ 2911.174702] Modules linked in: iscsi_ibft(E) iscsi_boot_sysfs(E) rfkill(E) af_packet(E) nls_iso8859_1(E) nls_cp437(E) vfat(E) fat(E) ena(E) tiny_power_button(E) qemu_fw_cfg(E) button(E) fuse(E) efi_pstore(E) ip_tables(E) x_tables(E) xfs(E) libcrc32c(E) aes_ce_blk(E) aes_ce_cipher(E) crct10dif_ce(E) polyval_ce(E) polyval_generic(E) ghash_ce(E) gf128mul(E) sm4_ce_gcm(E) sm4_ce_ccm(E) sm4_ce(E) sm4_ce_cipher(E) sm4(E) sm3_ce(E) sm3(E) sha3_ce(E) sha512_ce(E) sha512_arm64(E) sha2_ce(E) sha256_arm64(E) nvme(E) sha1_ce(E) nvme_core(E) nvme_auth(E) t10_pi(E) sg(E) scsi_mod(E) scsi_common(E) efivarfs(E)
[ 2911.174738] Unloaded tainted modules: cppc_cpufreq(E):1
[ 2911.180985] CPU: 2 PID: 12247 Comm: cat Kdump: loaded Tainted: G            E      6.7.0-default #2 1b58bbb22c97e4399dc09f92d309344f69c44a01
[ 2911.182398] Hardware name: Amazon EC2 c7g.8xlarge/, BIOS 1.0 11/1/2018
[ 2911.183208] pstate: 61400005 (nZCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 2911.184038] pc : tracing_map_sort_entries+0x3e0/0x408
[ 2911.184667] lr : tracing_map_sort_entries+0x3e0/0x408
[ 2911.185310] sp : ffff8000a1513900
[ 2911.185750] x29: ffff8000a1513900 x28: ffff0003f272fe80 x27: 0000000000000001
[ 2911.186600] x26: ffff0003f272fe80 x25: 0000000000000030 x24: 0000000000000008
[ 2911.187458] x23: ffff0003c5788000 x22: ffff0003c16710c8 x21: ffff80008017f180
[ 2911.188310] x20: ffff80008017f000 x19: ffff80008017f180 x18: ffffffffffffffff
[ 2911.189160] x17: 0000000000000000 x16: 0000000000000000 x15: ffff8000a15134b8
[ 2911.190015] x14: 0000000000000000 x13: 205d373432323154 x12: 5b5d313131333731
[ 2911.190844] x11: 00000000fffeffff x10: 00000000fffeffff x9 : ffffd1b78274a13c
[ 2911.191716] x8 : 000000000017ffe8 x7 : c0000000fffeffff x6 : 000000000057ffa8
[ 2911.192554] x5 : ffff0012f6c24ec0 x4 : 0000000000000000 x3 : ffff2e5b72b5d000
[ 2911.193404] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0003ff254480
[ 2911.194259] Call trace:
[ 2911.194626]  tracing_map_sort_entries+0x3e0/0x408
[ 2911.195220]  hist_show+0x124/0x800
[ 2911.195692]  seq_read_iter+0x1d4/0x4e8
[ 2911.196193]  seq_read+0xe8/0x138
[ 2911.196638]  vfs_read+0xc8/0x300
[ 2911.197078]  ksys_read+0x70/0x108
[ 2911.197534]  __arm64_sys_read+0x24/0x38
[ 2911.198046]  invoke_syscall+0x78/0x108
[ 2911.198553]  el0_svc_common.constprop.0+0xd0/0xf8
[ 2911.199157]  do_el0_svc+0x28/0x40
[ 2911.199613]  el0_svc+0x40/0x178
[ 2911.200048]  el0t_64_sync_handler+0x13c/0x158
[ 2911.200621]  el0t_64_sync+0x1a8/0x1b0
[ 2911.201115] ---[ end trace 0000000000000000 ]---

The problem appears to be caused by CPU reordering of writes issued from
__tracing_map_insert().

The check for the presence of an element with a given key in this
function is:

 val = READ_ONCE(entry->val);
 if (val && keys_match(key, val->key, map->key_size)) ...

The write of a new entry is:

 elt = get_free_elt(map);
 memcpy(elt->key, key, map->key_size);
 entry->val = elt;

The "memcpy(elt->key, key, map->key_size);" and "entry->val = elt;"
stores may become visible in the reversed order on another CPU. This
second CPU might then incorrectly determine that a new key doesn't match
an already present val->key and subsequently insert a new element,
resulting in a duplicate.

Fix the problem by adding a write barrier between
"memcpy(elt->key, key, map->key_size);" and "entry->val = elt;", and for
good measure, also use WRITE_ONCE(entry->val, elt) for publishing the
element. The sequence pairs with the mentioned "READ_ONCE(entry->val);"
and the "val->key" check which has an address dependency.

The barrier is placed on a path executed when adding an element for
a new key. Subsequent updates targeting the same key remain unaffected.

From the user's perspective, the issue was introduced by commit
c193707dde ("tracing: Remove code which merges duplicates"), which
followed commit cbf4100efb ("tracing: Add support to detect and avoid
duplicates"). The previous code operated differently; it inherently
expected potential races which result in duplicates but merged them
later when they occurred.

Link: https://lore.kernel.org/linux-trace-kernel/20240122150928.27725-1-petr.pavlu@suse.com

Fixes: c193707dde ("tracing: Remove code which merges duplicates")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Acked-by: Tom Zanussi <tom.zanussi@linux.intel.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-31 16:21:06 -08:00
James Gowans
61c8b879f9 kexec: do syscore_shutdown() in kernel_kexec
commit 7bb943806f upstream.

syscore_shutdown() runs driver and module callbacks to get the system into
a state where it can be correctly shut down.  In commit 6f389a8f1d ("PM
/ reboot: call syscore_shutdown() after disable_nonboot_cpus()")
syscore_shutdown() was removed from kernel_restart_prepare() and hence got
(incorrectly?) removed from the kexec flow.  This was innocuous until
commit 6735150b69 ("KVM: Use syscore_ops instead of reboot_notifier to
hook restart/shutdown") changed the way that KVM registered its shutdown
callbacks, switching from reboot notifiers to syscore_ops.shutdown.  As
syscore_shutdown() is missing from kexec, KVM's shutdown hook is not run
and virtualisation is left enabled on the boot CPU which results in triple
faults when switching to the new kernel on Intel x86 VT-x with VMXE
enabled.

Fix this by adding syscore_shutdown() to the kexec sequence.  In terms of
where to add it, it is being added after migrating the kexec task to the
boot CPU, but before APs are shut down.  It is not totally clear if this
is the best place: in commit 6f389a8f1d ("PM / reboot: call
syscore_shutdown() after disable_nonboot_cpus()") it is stated that
"syscore_ops operations should be carried with one CPU on-line and
interrupts disabled." APs are only offlined later in machine_shutdown(),
so this syscore_shutdown() is being run while APs are still online.  This
seems to be the correct place as it matches where syscore_shutdown() is
run in the reboot and halt flows - they also run it before APs are shut
down.  The assumption is that the commit message in commit 6f389a8f1d
("PM / reboot: call syscore_shutdown() after disable_nonboot_cpus()") is
no longer valid.

KVM has been discussed here as it is what broke loudly by not having
syscore_shutdown() in kexec, but this change impacts more than just KVM;
all drivers/modules which register a syscore_ops.shutdown callback will
now be invoked in the kexec flow.  Looking at some of them like x86 MCE it
is probably more correct to also shut these down during kexec.
Maintainers of all drivers which use syscore_ops.shutdown are added on CC
for visibility.  They are:

arch/powerpc/platforms/cell/spu_base.c  .shutdown = spu_shutdown,
arch/x86/kernel/cpu/mce/core.c	        .shutdown = mce_syscore_shutdown,
arch/x86/kernel/i8259.c                 .shutdown = i8259A_shutdown,
drivers/irqchip/irq-i8259.c	        .shutdown = i8259A_shutdown,
drivers/irqchip/irq-sun6i-r.c	        .shutdown = sun6i_r_intc_shutdown,
drivers/leds/trigger/ledtrig-cpu.c	.shutdown = ledtrig_cpu_syscore_shutdown,
drivers/power/reset/sc27xx-poweroff.c	.shutdown = sc27xx_poweroff_shutdown,
kernel/irq/generic-chip.c	        .shutdown = irq_gc_shutdown,
virt/kvm/kvm_main.c	                .shutdown = kvm_shutdown,

This has been tested by doing a kexec on x86_64 and aarch64.

Link: https://lkml.kernel.org/r/20231213064004.2419447-1-jgowans@amazon.com
Fixes: 6735150b69 ("KVM: Use syscore_ops instead of reboot_notifier to hook restart/shutdown")
Signed-off-by: James Gowans <jgowans@amazon.com>
Cc: Baoquan He <bhe@redhat.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Chen-Yu Tsai <wens@csie.org>
Cc: Jernej Skrabec <jernej.skrabec@gmail.com>
Cc: Samuel Holland <samuel@sholland.org>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Sebastian Reichel <sre@kernel.org>
Cc: Orson Zhai <orsonzhai@gmail.com>
Cc: Alexander Graf <graf@amazon.de>
Cc: Jan H. Schoenherr <jschoenh@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:21:02 -08:00
Huacai Chen
8b745a045e kdump: defer the insertion of crashkernel resources
commit 4a693ce65b upstream.

In /proc/iomem, sub-regions should be inserted after their parent,
otherwise the insertion of parent resource fails.  But after generic
crashkernel reservation applied, in both RISC-V and ARM64 (LoongArch will
also use generic reservation later on), crashkernel resources are inserted
before their parent, which causes the parent disappear in /proc/iomem.  So
we defer the insertion of crashkernel resources to an early_initcall().

1, Without 'crashkernel' parameter:

 100d0100-100d01ff : LOON0001:00
   100d0100-100d01ff : LOON0001:00 LOON0001:00
 100e0000-100e0bff : LOON0002:00
   100e0000-100e0bff : LOON0002:00 LOON0002:00
 1fe001e0-1fe001e7 : serial
 90400000-fa17ffff : System RAM
   f6220000-f622ffff : Reserved
   f9ee0000-f9ee3fff : Reserved
   fa120000-fa17ffff : Reserved
 fa190000-fe0bffff : System RAM
   fa190000-fa1bffff : Reserved
 fe4e0000-47fffffff : System RAM
   43c000000-441ffffff : Reserved
   47ff98000-47ffa3fff : Reserved
   47ffa4000-47ffa7fff : Reserved
   47ffa8000-47ffabfff : Reserved
   47ffac000-47ffaffff : Reserved
   47ffb0000-47ffb3fff : Reserved

2, With 'crashkernel' parameter, before this patch:

 100d0100-100d01ff : LOON0001:00
   100d0100-100d01ff : LOON0001:00 LOON0001:00
 100e0000-100e0bff : LOON0002:00
   100e0000-100e0bff : LOON0002:00 LOON0002:00
 1fe001e0-1fe001e7 : serial
 e6200000-f61fffff : Crash kernel
 fa190000-fe0bffff : System RAM
   fa190000-fa1bffff : Reserved
 fe4e0000-47fffffff : System RAM
   43c000000-441ffffff : Reserved
   47ff98000-47ffa3fff : Reserved
   47ffa4000-47ffa7fff : Reserved
   47ffa8000-47ffabfff : Reserved
   47ffac000-47ffaffff : Reserved
   47ffb0000-47ffb3fff : Reserved

3, With 'crashkernel' parameter, after this patch:

 100d0100-100d01ff : LOON0001:00
   100d0100-100d01ff : LOON0001:00 LOON0001:00
 100e0000-100e0bff : LOON0002:00
   100e0000-100e0bff : LOON0002:00 LOON0002:00
 1fe001e0-1fe001e7 : serial
 90400000-fa17ffff : System RAM
   e6200000-f61fffff : Crash kernel
   f6220000-f622ffff : Reserved
   f9ee0000-f9ee3fff : Reserved
   fa120000-fa17ffff : Reserved
 fa190000-fe0bffff : System RAM
   fa190000-fa1bffff : Reserved
 fe4e0000-47fffffff : System RAM
   43c000000-441ffffff : Reserved
   47ff98000-47ffa3fff : Reserved
   47ffa4000-47ffa7fff : Reserved
   47ffa8000-47ffabfff : Reserved
   47ffac000-47ffaffff : Reserved
   47ffb0000-47ffb3fff : Reserved

Link: https://lkml.kernel.org/r/20231229080213.2622204-1-chenhuacai@loongson.cn
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
Fixes: 0ab97169aa ("crash_core: add generic function to do reservation")
Cc: Baoquan He <bhe@redhat.com>
Cc: Zhen Lei <thunder.leizhen@huawei.com>
Cc: <stable@vger.kernel.org>	[6.6+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:21:02 -08:00
Hongchen Zhang
2ea043279a PM: hibernate: Enforce ordering during image compression/decompression
commit 71cd7e80cf upstream.

An S4 (suspend to disk) test on the LoongArch 3A6000 platform sometimes
fails with the following error messaged in the dmesg log:

	Invalid LZO compressed length

That happens because when compressing/decompressing the image, the
synchronization between the control thread and the compress/decompress/crc
thread is based on a relaxed ordering interface, which is unreliable, and the
following situation may occur:

CPU 0					CPU 1
save_image_lzo				lzo_compress_threadfn
					  atomic_set(&d->stop, 1);
  atomic_read(&data[thr].stop)
  data[thr].cmp = data[thr].cmp_len;
	  				  WRITE data[thr].cmp_len

Then CPU0 gets a stale cmp_len and writes it to disk. During resume from S4,
wrong cmp_len is loaded.

To maintain data consistency between the two threads, use the acquire/release
variants of atomic set and read operations.

Fixes: 081a9d043c ("PM / Hibernate: Improve performance of LZO/plain hibernation, checksum image")
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hongchen Zhang <zhanghongchen@loongson.cn>
Co-developed-by: Weihao Li <liweihao@loongson.cn>
Signed-off-by: Weihao Li <liweihao@loongson.cn>
[ rjw: Subject rewrite and changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:20:54 -08:00
Rafael J. Wysocki
22f7c9cb05 async: Introduce async_schedule_dev_nocall()
commit 7d4b5d7a37 upstream.

In preparation for subsequent changes, introduce a specialized variant
of async_schedule_dev() that will not invoke the argument function
synchronously when it cannot be scheduled for asynchronous execution.

The new function, async_schedule_dev_nocall(), will be used for fixing
possible deadlocks in the system-wide power management core code.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com> for the series.
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:20:53 -08:00
Rafael J. Wysocki
8ae1a4fd03 async: Split async_schedule_node_domain()
commit 6aa09a5bcc upstream.

In preparation for subsequent changes, split async_schedule_node_domain()
in two pieces so as to allow the bottom part of it to be called from a
somewhat different code path.

No functional impact.

Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Stanislaw Gruszka <stanislaw.gruszka@linux.intel.com>
Tested-by: Youngmin Nam <youngmin.nam@samsung.com>
Reviewed-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-31 16:20:53 -08:00
Christophe JAILLET
4daed382c4 kdb: Fix a potential buffer overflow in kdb_local()
[ Upstream commit 4f41d30cd6 ]

When appending "[defcmd]" to 'kdb_prompt_str', the size of the string
already in the buffer should be taken into account.

An option could be to switch from strncat() to strlcat() which does the
correct test to avoid such an overflow.

However, this actually looks as dead code, because 'defcmd_in_progress'
can't be true here.
See a more detailed explanation at [1].

[1]: https://lore.kernel.org/all/CAD=FV=WSh7wKN7Yp-3wWiDgX4E3isQ8uh0LCzTmd1v9Cg9j+nQ@mail.gmail.com/

Fixes: 5d5314d679 ("kdb: core for kgdb back end (1 of 2)")
Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Reviewed-by: Douglas Anderson <dianders@chromium.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:45:30 -08:00
Hao Sun
1b500d5d6c bpf: Reject variable offset alu on PTR_TO_FLOW_KEYS
[ Upstream commit 22c7fa171a ]

For PTR_TO_FLOW_KEYS, check_flow_keys_access() only uses fixed off
for validation. However, variable offset ptr alu is not prohibited
for this ptr kind. So the variable offset is not checked.

The following prog is accepted:

  func#0 @0
  0: R1=ctx() R10=fp0
  0: (bf) r6 = r1                       ; R1=ctx() R6_w=ctx()
  1: (79) r7 = *(u64 *)(r6 +144)        ; R6_w=ctx() R7_w=flow_keys()
  2: (b7) r8 = 1024                     ; R8_w=1024
  3: (37) r8 /= 1                       ; R8_w=scalar()
  4: (57) r8 &= 1024                    ; R8_w=scalar(smin=smin32=0,
  smax=umax=smax32=umax32=1024,var_off=(0x0; 0x400))
  5: (0f) r7 += r8
  mark_precise: frame0: last_idx 5 first_idx 0 subseq_idx -1
  mark_precise: frame0: regs=r8 stack= before 4: (57) r8 &= 1024
  mark_precise: frame0: regs=r8 stack= before 3: (37) r8 /= 1
  mark_precise: frame0: regs=r8 stack= before 2: (b7) r8 = 1024
  6: R7_w=flow_keys(smin=smin32=0,smax=umax=smax32=umax32=1024,var_off
  =(0x0; 0x400)) R8_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=1024,
  var_off=(0x0; 0x400))
  6: (79) r0 = *(u64 *)(r7 +0)          ; R0_w=scalar()
  7: (95) exit

This prog loads flow_keys to r7, and adds the variable offset r8
to r7, and finally causes out-of-bounds access:

  BUG: unable to handle page fault for address: ffffc90014c80038
  [...]
  Call Trace:
   <TASK>
   bpf_dispatcher_nop_func include/linux/bpf.h:1231 [inline]
   __bpf_prog_run include/linux/filter.h:651 [inline]
   bpf_prog_run include/linux/filter.h:658 [inline]
   bpf_prog_run_pin_on_cpu include/linux/filter.h:675 [inline]
   bpf_flow_dissect+0x15f/0x350 net/core/flow_dissector.c:991
   bpf_prog_test_run_flow_dissector+0x39d/0x620 net/bpf/test_run.c:1359
   bpf_prog_test_run kernel/bpf/syscall.c:4107 [inline]
   __sys_bpf+0xf8f/0x4560 kernel/bpf/syscall.c:5475
   __do_sys_bpf kernel/bpf/syscall.c:5561 [inline]
   __se_sys_bpf kernel/bpf/syscall.c:5559 [inline]
   __x64_sys_bpf+0x73/0xb0 kernel/bpf/syscall.c:5559
   do_syscall_x64 arch/x86/entry/common.c:52 [inline]
   do_syscall_64+0x3f/0x110 arch/x86/entry/common.c:83
   entry_SYSCALL_64_after_hwframe+0x63/0x6b

Fix this by rejecting ptr alu with variable offset on flow_keys.
Applying the patch rejects the program with "R7 pointer arithmetic
on flow_keys prohibited".

Fixes: d58e468b11 ("flow_dissector: implements flow dissector BPF hook")
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/bpf/20240115082028.9992-1-sunhao.th@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:45:29 -08:00
Paul E. McKenney
8194c4bd29 rcu: Restrict access to RCU CPU stall notifiers
[ Upstream commit 4e58aaeebb ]

Although the RCU CPU stall notifiers can be useful for dumping state when
tracking down delicate forward-progress bugs where NUMA effects cause
cache lines to be delivered to a given CPU regularly, but always in a
state that prevents that CPU from making forward progress.  These bugs can
be detected by the RCU CPU stall-warning mechanism, but in some cases,
the stall-warnings printk()s disrupt the forward-progress bug before
any useful state can be obtained.

Unfortunately, the notifier mechanism added by commit 5b404fdaba ("rcu:
Add RCU CPU stall notifier") can make matters worse if used at all
carelessly. For example, if the stall warning was caused by a lock not
being released, then any attempt to acquire that lock in the notifier
will hang. This will prevent not only the notifier from producing any
useful output, but it will also prevent the stall-warning message from
ever appearing.

This commit therefore hides this new RCU CPU stall notifier
mechanism under a new RCU_CPU_STALL_NOTIFIER Kconfig option that
depends on both DEBUG_KERNEL and RCU_EXPERT.  In addition, the
rcupdate.rcu_cpu_stall_notifiers=1 kernel boot parameter must also
be specified.  The RCU_CPU_STALL_NOTIFIER Kconfig option's help text
contains a warning and explains the dangers of careless use, recommending
lockless notifier code.  In addition, a WARN() is triggered each time
that an attempt is made to register a stall-warning notifier in kernels
built with CONFIG_RCU_CPU_STALL_NOTIFIER=y.

This combination of measures will keep use of this mechanism confined to
debug kernels and away from routine deployments.

[ paulmck: Apply Dan Carpenter feedback. ]

Fixes: 5b404fdaba ("rcu: Add RCU CPU stall notifier")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:45:18 -08:00
Jiri Olsa
50ae82f080 bpf: Fix re-attachment branch in bpf_tracing_prog_attach
commit 715d82ba63 upstream.

The following case can cause a crash due to missing attach_btf:

1) load rawtp program
2) load fentry program with rawtp as target_fd
3) create tracing link for fentry program with target_fd = 0
4) repeat 3

In the end we have:

- prog->aux->dst_trampoline == NULL
- tgt_prog == NULL (because we did not provide target_fd to link_create)
- prog->aux->attach_btf == NULL (the program was loaded with attach_prog_fd=X)
- the program was loaded for tgt_prog but we have no way to find out which one

    BUG: kernel NULL pointer dereference, address: 0000000000000058
    Call Trace:
     <TASK>
     ? __die+0x20/0x70
     ? page_fault_oops+0x15b/0x430
     ? fixup_exception+0x22/0x330
     ? exc_page_fault+0x6f/0x170
     ? asm_exc_page_fault+0x22/0x30
     ? bpf_tracing_prog_attach+0x279/0x560
     ? btf_obj_id+0x5/0x10
     bpf_tracing_prog_attach+0x439/0x560
     __sys_bpf+0x1cf4/0x2de0
     __x64_sys_bpf+0x1c/0x30
     do_syscall_64+0x41/0xf0
     entry_SYSCALL_64_after_hwframe+0x6e/0x76

Return -EINVAL in this situation.

Fixes: f3a9507554 ("bpf: Allow trampoline re-attach for tracing and lsm programs")
Cc: stable@vger.kernel.org
Signed-off-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Song Liu <song@kernel.org>
Signed-off-by: Dmitrii Dolgov <9erthalion6@gmail.com>
Link: https://lore.kernel.org/r/20240103190559.14750-4-9erthalion6@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-25 15:45:15 -08:00
Heiko Carstens
8c3e4ca931 tick-sched: Fix idle and iowait sleeptime accounting vs CPU hotplug
commit 71fee48fb7 upstream.

When offlining and onlining CPUs the overall reported idle and iowait
times as reported by /proc/stat jump backward and forward:

cpu  132 0 176 225249 47 6 6 21 0 0
cpu0 80 0 115 112575 33 3 4 18 0 0
cpu1 52 0 60 112673 13 3 1 2 0 0

cpu  133 0 177 226681 47 6 6 21 0 0
cpu0 80 0 116 113387 33 3 4 18 0 0

cpu  133 0 178 114431 33 6 6 21 0 0 <---- jump backward
cpu0 80 0 116 114247 33 3 4 18 0 0
cpu1 52 0 61 183 0 3 1 2 0 0        <---- idle + iowait start with 0

cpu  133 0 178 228956 47 6 6 21 0 0 <---- jump forward
cpu0 81 0 117 114929 33 3 4 18 0 0

Reason for this is that get_idle_time() in fs/proc/stat.c has different
sources for both values depending on if a CPU is online or offline:

- if a CPU is online the values may be taken from its per cpu
  tick_cpu_sched structure

- if a CPU is offline the values are taken from its per cpu cpustat
  structure

The problem is that the per cpu tick_cpu_sched structure is set to zero on
CPU offline. See tick_cancel_sched_timer() in kernel/time/tick-sched.c.

Therefore when a CPU is brought offline and online afterwards both its idle
and iowait sleeptime will be zero, causing a jump backward in total system
idle and iowait sleeptime. In a similar way if a CPU is then brought
offline again the total idle and iowait sleeptimes will jump forward.

It looks like this behavior was introduced with commit 4b0c0f294f
("tick: Cleanup NOHZ per cpu data on cpu down").

This was only noticed now on s390, since we switched to generic idle time
reporting with commit be76ea6144 ("s390/idle: remove arch_cpu_idle_time()
and corresponding code").

Fix this by preserving the values of idle_sleeptime and iowait_sleeptime
members of the per-cpu tick_sched structure on CPU hotplug.

Fixes: 4b0c0f294f ("tick: Cleanup NOHZ per cpu data on cpu down")
Reported-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20240115163555.1004144-1-hca@linux.ibm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-01-25 15:45:10 -08:00
Hou Tao
1c842bfde7 bpf: Use c->unit_size to select target cache during free
[ Upstream commit 7ac5c53e00 ]

At present, bpf memory allocator uses check_obj_size() to ensure that
ksize() of allocated pointer is equal with the unit_size of used
bpf_mem_cache. Its purpose is to prevent bpf_mem_free() from selecting
a bpf_mem_cache which has different unit_size compared with the
bpf_mem_cache used for allocation. But as reported by lkp, the return
value of ksize() or kmalloc_size_roundup() may change due to slab merge
and it will lead to the warning report in check_obj_size().

The reported warning happened as follows:
(1) in bpf_mem_cache_adjust_size(), kmalloc_size_roundup(96) returns the
object_size of kmalloc-96 instead of kmalloc-cg-96. The object_size of
kmalloc-96 is 96, so size_index for 96 is not adjusted accordingly.
(2) the object_size of kmalloc-cg-96 is adjust from 96 to 128 due to
slab merge in __kmem_cache_alias(). For SLAB, SLAB_HWCACHE_ALIGN is
enabled by default for kmalloc slab, so align is 64 and size is 128 for
kmalloc-cg-96. SLUB has a similar merge logic, but its object_size will
not be changed, because its align is 8 under x86-64.
(3) when unit_alloc() does kmalloc_node(96, __GFP_ACCOUNT, node),
ksize() returns 128 instead of 96 for the returned pointer.
(4) the warning in check_obj_size() is triggered.

Considering the slab merge can happen in anytime (e.g, a slab created in
a new module), the following case is also possible: during the
initialization of bpf_global_ma, there is no slab merge and ksize() for
a 96-bytes object returns 96. But after that a new slab created by a
kernel module is merged to kmalloc-cg-96 and the object_size of
kmalloc-cg-96 is adjust from 96 to 128 (which is possible for x86-64 +
CONFIG_SLAB, because its alignment requirement is 64 for 96-bytes slab).
So soon or later, when bpf_global_ma frees a 96-byte-sized pointer
which is allocated from bpf_mem_cache with unit_size=96, bpf_mem_free()
will free the pointer through a bpf_mem_cache in which unit_size is 128,
because the return value of ksize() changes. The warning for the
mismatch will be triggered again.

A feasible fix is introducing similar APIs compared with ksize() and
kmalloc_size_roundup() to return the actually-allocated size instead of
size which may change due to slab merge, but it will introduce
unnecessary dependency on the implementation details of mm subsystem.

As for now the pointer of bpf_mem_cache is saved in the 8-bytes area
(or 4-bytes under 32-bit host) above the returned pointer, using
unit_size in the saved bpf_mem_cache to select the target cache instead
of inferring the size from the pointer itself. Beside no extra
dependency on mm subsystem, the performance for bpf_mem_free_rcu() is
also improved as shown below.

Before applying the patch, the performances of bpf_mem_alloc() and
bpf_mem_free_rcu() on 8-CPUs VM with one producer are as follows:

kmalloc : alloc 11.69 ± 0.28M/s free 29.58 ± 0.93M/s
percpu  : alloc 14.11 ± 0.52M/s free 14.29 ± 0.99M/s

After apply the patch, the performance for bpf_mem_free_rcu() increases
9% and 146% for kmalloc memory and per-cpu memory respectively:

kmalloc: alloc 11.01 ± 0.03M/s free   32.42 ± 0.48M/s
percpu:  alloc 12.84 ± 0.12M/s free   35.24 ± 0.23M/s

After the fixes, there is no need to adjust size_index to fix the
mismatch between allocation and free, so remove it as well. Also return
NULL instead of ZERO_SIZE_PTR for zero-sized alloc in bpf_mem_alloc(),
because there is no bpf_mem_cache pointer saved above ZERO_SIZE_PTR.

Fixes: 9077fc228f ("bpf: Use kmalloc_size_roundup() to adjust size_index")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/bpf/202310302113.9f8fe705-oliver.sang@intel.com
Signed-off-by: Hou Tao <houtao1@huawei.com>
Link: https://lore.kernel.org/r/20231216131052.27621-2-houtao@huaweicloud.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:54 -08:00
Hou Tao
3818a1e3b2 bpf: Limit the number of kprobes when attaching program to multiple kprobes
[ Upstream commit d6d1e6c17c ]

An abnormally big cnt may also be assigned to kprobe_multi.cnt when
attaching multiple kprobes. It will trigger the following warning in
kvmalloc_node():

	if (unlikely(size > INT_MAX)) {
	    WARN_ON_ONCE(!(flags & __GFP_NOWARN));
	    return NULL;
	}

Fix the warning by limiting the maximal number of kprobes in
bpf_kprobe_multi_link_attach(). If the number of kprobes is greater than
MAX_KPROBE_MULTI_CNT, the attachment will fail and return -E2BIG.

Fixes: 0dcac27254 ("bpf: Add multi kprobe link")
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231215100708.2265609-3-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:53 -08:00
Hou Tao
b58c6d0d18 bpf: Limit the number of uprobes when attaching program to multiple uprobes
[ Upstream commit 8b2efe51ba ]

An abnormally big cnt may be passed to link_create.uprobe_multi.cnt,
and it will trigger the following warning in kvmalloc_node():

	if (unlikely(size > INT_MAX)) {
		WARN_ON_ONCE(!(flags & __GFP_NOWARN));
		return NULL;
	}

Fix the warning by limiting the maximal number of uprobes in
bpf_uprobe_multi_link_attach(). If the number of uprobes is greater than
MAX_UPROBE_MULTI_CNT, the attachment will return -E2BIG.

Fixes: 89ae89f53d ("bpf: Add multi uprobe link")
Reported-by: Xingwei Lee <xrivendell7@gmail.com>
Signed-off-by: Hou Tao <houtao1@huawei.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Closes: https://lore.kernel.org/bpf/CABOYnLwwJY=yFAGie59LFsUsBAgHfroVqbzZ5edAXbFE3YiNVA@mail.gmail.com
Link: https://lore.kernel.org/bpf/20231215100708.2265609-2-houtao@huaweicloud.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:53 -08:00
Joakim Zhang
2fd1335445 dma-mapping: clear dev->dma_mem to NULL after freeing it
[ Upstream commit b07bc23476 ]

Reproduced with below sequence:
dma_declare_coherent_memory()->dma_release_coherent_memory()
->dma_declare_coherent_memory()->"return -EBUSY" error

It will return -EBUSY from the dma_assign_coherent_memory()
in dma_declare_coherent_memory(), the reason is that dev->dma_mem
pointer has not been set to NULL after it's freed.

Fixes: cf65a0f6f6 ("dma-mapping: move all DMA mapping code to kernel/dma")
Signed-off-by: Joakim Zhang <joakim.zhang@cixtech.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:53 -08:00
Yonghong Song
f9ff6ef1c7 bpf: Fix a race condition between btf_put() and map_free()
[ Upstream commit 59e5791f59 ]

When running `./test_progs -j` in my local vm with latest kernel,
I once hit a kasan error like below:

  [ 1887.184724] BUG: KASAN: slab-use-after-free in bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.185599] Read of size 4 at addr ffff888106806910 by task kworker/u12:2/2830
  [ 1887.186498]
  [ 1887.186712] CPU: 3 PID: 2830 Comm: kworker/u12:2 Tainted: G           OEL     6.7.0-rc3-00699-g90679706d486-dirty #494
  [ 1887.188034] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
  [ 1887.189618] Workqueue: events_unbound bpf_map_free_deferred
  [ 1887.190341] Call Trace:
  [ 1887.190666]  <TASK>
  [ 1887.190949]  dump_stack_lvl+0xac/0xe0
  [ 1887.191423]  ? nf_tcp_handle_invalid+0x1b0/0x1b0
  [ 1887.192019]  ? panic+0x3c0/0x3c0
  [ 1887.192449]  print_report+0x14f/0x720
  [ 1887.192930]  ? preempt_count_sub+0x1c/0xd0
  [ 1887.193459]  ? __virt_addr_valid+0xac/0x120
  [ 1887.194004]  ? bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.194572]  kasan_report+0xc3/0x100
  [ 1887.195085]  ? bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.195668]  bpf_rb_root_free+0x1f8/0x2b0
  [ 1887.196183]  ? __bpf_obj_drop_impl+0xb0/0xb0
  [ 1887.196736]  ? preempt_count_sub+0x1c/0xd0
  [ 1887.197270]  ? preempt_count_sub+0x1c/0xd0
  [ 1887.197802]  ? _raw_spin_unlock+0x1f/0x40
  [ 1887.198319]  bpf_obj_free_fields+0x1d4/0x260
  [ 1887.198883]  array_map_free+0x1a3/0x260
  [ 1887.199380]  bpf_map_free_deferred+0x7b/0xe0
  [ 1887.199943]  process_scheduled_works+0x3a2/0x6c0
  [ 1887.200549]  worker_thread+0x633/0x890
  [ 1887.201047]  ? __kthread_parkme+0xd7/0xf0
  [ 1887.201574]  ? kthread+0x102/0x1d0
  [ 1887.202020]  kthread+0x1ab/0x1d0
  [ 1887.202447]  ? pr_cont_work+0x270/0x270
  [ 1887.202954]  ? kthread_blkcg+0x50/0x50
  [ 1887.203444]  ret_from_fork+0x34/0x50
  [ 1887.203914]  ? kthread_blkcg+0x50/0x50
  [ 1887.204397]  ret_from_fork_asm+0x11/0x20
  [ 1887.204913]  </TASK>
  [ 1887.204913]  </TASK>
  [ 1887.205209]
  [ 1887.205416] Allocated by task 2197:
  [ 1887.205881]  kasan_set_track+0x3f/0x60
  [ 1887.206366]  __kasan_kmalloc+0x6e/0x80
  [ 1887.206856]  __kmalloc+0xac/0x1a0
  [ 1887.207293]  btf_parse_fields+0xa15/0x1480
  [ 1887.207836]  btf_parse_struct_metas+0x566/0x670
  [ 1887.208387]  btf_new_fd+0x294/0x4d0
  [ 1887.208851]  __sys_bpf+0x4ba/0x600
  [ 1887.209292]  __x64_sys_bpf+0x41/0x50
  [ 1887.209762]  do_syscall_64+0x4c/0xf0
  [ 1887.210222]  entry_SYSCALL_64_after_hwframe+0x63/0x6b
  [ 1887.210868]
  [ 1887.211074] Freed by task 36:
  [ 1887.211460]  kasan_set_track+0x3f/0x60
  [ 1887.211951]  kasan_save_free_info+0x28/0x40
  [ 1887.212485]  ____kasan_slab_free+0x101/0x180
  [ 1887.213027]  __kmem_cache_free+0xe4/0x210
  [ 1887.213514]  btf_free+0x5b/0x130
  [ 1887.213918]  rcu_core+0x638/0xcc0
  [ 1887.214347]  __do_softirq+0x114/0x37e

The error happens at bpf_rb_root_free+0x1f8/0x2b0:

  00000000000034c0 <bpf_rb_root_free>:
  ; {
    34c0: f3 0f 1e fa                   endbr64
    34c4: e8 00 00 00 00                callq   0x34c9 <bpf_rb_root_free+0x9>
    34c9: 55                            pushq   %rbp
    34ca: 48 89 e5                      movq    %rsp, %rbp
  ...
  ;       if (rec && rec->refcount_off >= 0 &&
    36aa: 4d 85 ed                      testq   %r13, %r13
    36ad: 74 a9                         je      0x3658 <bpf_rb_root_free+0x198>
    36af: 49 8d 7d 10                   leaq    0x10(%r13), %rdi
    36b3: e8 00 00 00 00                callq   0x36b8 <bpf_rb_root_free+0x1f8>
                                        <==== kasan function
    36b8: 45 8b 7d 10                   movl    0x10(%r13), %r15d
                                        <==== use-after-free load
    36bc: 45 85 ff                      testl   %r15d, %r15d
    36bf: 78 8c                         js      0x364d <bpf_rb_root_free+0x18d>

So the problem is at rec->refcount_off in the above.

I did some source code analysis and find the reason.
                                  CPU A                        CPU B
  bpf_map_put:
    ...
    btf_put with rcu callback
    ...
    bpf_map_free_deferred
      with system_unbound_wq
    ...                          ...                           ...
    ...                          btf_free_rcu:                 ...
    ...                          ...                           bpf_map_free_deferred:
    ...                          ...
    ...         --------->       btf_struct_metas_free()
    ...         | race condition ...
    ...         --------->                                     map->ops->map_free()
    ...
    ...                          btf->struct_meta_tab = NULL

In the above, map_free() corresponds to array_map_free() and eventually
calling bpf_rb_root_free() which calls:
  ...
  __bpf_obj_drop_impl(obj, field->graph_root.value_rec, false);
  ...

Here, 'value_rec' is assigned in btf_check_and_fixup_fields() with following code:

  meta = btf_find_struct_meta(btf, btf_id);
  if (!meta)
    return -EFAULT;
  rec->fields[i].graph_root.value_rec = meta->record;

So basically, 'value_rec' is a pointer to the record in struct_metas_tab.
And it is possible that that particular record has been freed by
btf_struct_metas_free() and hence we have a kasan error here.

Actually it is very hard to reproduce the failure with current bpf/bpf-next
code, I only got the above error once. To increase reproducibility, I added
a delay in bpf_map_free_deferred() to delay map->ops->map_free(), which
significantly increased reproducibility.

#  diff --git a/kernel/bpf/syscall.c b/kernel/bpf/syscall.c
#  index 5e43ddd1b83f..aae5b5213e93 100644
#  --- a/kernel/bpf/syscall.c
#  +++ b/kernel/bpf/syscall.c
#  @@ -695,6 +695,7 @@ static void bpf_map_free_deferred(struct work_struct *work)
#        struct bpf_map *map = container_of(work, struct bpf_map, work);
#        struct btf_record *rec = map->record;
#
#  +     mdelay(100);
#        security_bpf_map_free(map);
#        bpf_map_release_memcg(map);
#        /* implementation dependent freeing */

Hao also provided test cases ([1]) for easily reproducing the above issue.

There are two ways to fix the issue, the v1 of the patch ([2]) moving
btf_put() after map_free callback, and the v5 of the patch ([3]) using
a kptr style fix which tries to get a btf reference during
map_check_btf(). Each approach has its pro and cons. The first approach
delays freeing btf while the second approach needs to acquire reference
depending on context which makes logic not very elegant and may
complicate things with future new data structures. Alexei
suggested in [4] going back to v1 which is what this patch
tries to do.

Rerun './test_progs -j' with the above mdelay() hack for a couple
of times and didn't observe the error for the above rb_root test cases.
Running Hou's test ([1]) is also successful.

  [1] https://lore.kernel.org/bpf/20231207141500.917136-1-houtao@huaweicloud.com/
  [2] v1: https://lore.kernel.org/bpf/20231204173946.3066377-1-yonghong.song@linux.dev/
  [3] v5: https://lore.kernel.org/bpf/20231208041621.2968241-1-yonghong.song@linux.dev/
  [4] v4: https://lore.kernel.org/bpf/CAADnVQJ3FiXUhZJwX_81sjZvSYYKCFB3BT6P8D59RS2Gu+0Z7g@mail.gmail.com/

Cc: Hou Tao <houtao@huaweicloud.com>
Fixes: 958cf2e273 ("bpf: Introduce bpf_obj_new")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20231214203815.1469107-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:52 -08:00
Andrei Matei
fbcf372c8e bpf: Fix accesses to uninit stack slots
[ Upstream commit 6b4a64bafd ]

Privileged programs are supposed to be able to read uninitialized stack
memory (ever since 6715df8d5) but, before this patch, these accesses
were permitted inconsistently. In particular, accesses were permitted
above state->allocated_stack, but not below it. In other words, if the
stack was already "large enough", the access was permitted, but
otherwise the access was rejected instead of being allowed to "grow the
stack". This undesired rejection was happening in two places:
- in check_stack_slot_within_bounds()
- in check_stack_range_initialized()
This patch arranges for these accesses to be permitted. A bunch of tests
that were relying on the old rejection had to change; all of them were
changed to add also run unprivileged, in which case the old behavior
persists. One tests couldn't be updated - global_func16 - because it
can't run unprivileged for other reasons.

This patch also fixes the tracking of the stack size for variable-offset
reads. This second fix is bundled in the same commit as the first one
because they're inter-related. Before this patch, writes to the stack
using registers containing a variable offset (as opposed to registers
with fixed, known values) were not properly contributing to the
function's needed stack size. As a result, it was possible for a program
to verify, but then to attempt to read out-of-bounds data at runtime
because a too small stack had been allocated for it.

Each function tracks the size of the stack it needs in
bpf_subprog_info.stack_depth, which is maintained by
update_stack_depth(). For regular memory accesses, check_mem_access()
was calling update_state_depth() but it was passing in only the fixed
part of the offset register, ignoring the variable offset. This was
incorrect; the minimum possible value of that register should be used
instead.

This tracking is now fixed by centralizing the tracking of stack size in
grow_stack_state(), and by lifting the calls to grow_stack_state() to
check_stack_access_within_bounds() as suggested by Andrii. The code is
now simpler and more convincingly tracks the correct maximum stack size.
check_stack_range_initialized() can now rely on enough stack having been
allocated for the access; this helps with the fix for the first issue.

A few tests were changed to also check the stack depth computation. The
one that fails without this patch is verifier_var_off:stack_write_priv_vs_unpriv.

Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231208032519.260451-3-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CABWLsev9g8UP_c3a=1qbuZUi20tGoUXoU07FPf-5FLvhOKOY+Q@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:50 -08:00
Andrei Matei
e5ad9ecb84 bpf: Guard stack limits against 32bit overflow
[ Upstream commit 1d38a9ee81 ]

This patch promotes the arithmetic around checking stack bounds to be
done in the 64-bit domain, instead of the current 32bit. The arithmetic
implies adding together a 64-bit register with a int offset. The
register was checked to be below 1<<29 when it was variable, but not
when it was fixed. The offset either comes from an instruction (in which
case it is 16 bit), from another register (in which case the caller
checked it to be below 1<<29 [1]), or from the size of an argument to a
kfunc (in which case it can be a u32 [2]). Between the register being
inconsistently checked to be below 1<<29, and the offset being up to an
u32, it appears that we were open to overflowing the `int`s which were
currently used for arithmetic.

[1] 815fb87b75/kernel/bpf/verifier.c (L7494-L7498)
[2] 815fb87b75/kernel/bpf/verifier.c (L11904)

Reported-by: Andrii Nakryiko <andrii.nakryiko@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-4-andreimatei1@gmail.com
Stable-dep-of: 6b4a64bafd ("bpf: Fix accesses to uninit stack slots")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:50 -08:00
Andrei Matei
1858b8a331 bpf: Fix verification of indirect var-off stack access
[ Upstream commit a833a17aea ]

This patch fixes a bug around the verification of possibly-zero-sized
stack accesses. When the access was done through a var-offset stack
pointer, check_stack_access_within_bounds was incorrectly computing the
maximum-offset of a zero-sized read to be the same as the register's min
offset. Instead, we have to take in account the register's maximum
possible value. The patch also simplifies how the max offset is checked;
the check is now simpler than for min offset.

The bug was allowing accesses to erroneously pass the
check_stack_access_within_bounds() checks, only to later crash in
check_stack_range_initialized() when all the possibly-affected stack
slots are iterated (this time with a correct max offset).
check_stack_range_initialized() is relying on
check_stack_access_within_bounds() for its accesses to the
stack-tracking vector to be within bounds; in the case of zero-sized
accesses, we were essentially only verifying that the lowest possible
slot was within bounds. We would crash when the max-offset of the stack
pointer was >= 0 (which shouldn't pass verification, and hopefully is
not something anyone's code attempts to do in practice).

Thanks Hao for reporting!

Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Reported-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Andrei Matei <andreimatei1@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20231207041150.229139-2-andreimatei1@gmail.com

Closes: https://lore.kernel.org/bpf/CACkBjsZGEUaRCHsmaX=h-efVogsRfK1FPxmkgb0Os_frnHiNdw@mail.gmail.com/
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:50 -08:00
Andrii Nakryiko
40617d45ea bpf: fix check for attempt to corrupt spilled pointer
[ Upstream commit ab125ed3ec ]

When register is spilled onto a stack as a 1/2/4-byte register, we set
slot_type[BPF_REG_SIZE - 1] (plus potentially few more below it,
depending on actual spill size). So to check if some stack slot has
spilled register we need to consult slot_type[7], not slot_type[0].

To avoid the need to remember and double-check this in the future, just
use is_spilled_reg() helper.

Fixes: 27113c59b6 ("bpf: Check the other end of slot_type for STACK_SPILL")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20231205184248.1502704-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2024-01-25 15:44:48 -08:00