Since smp_text_poke_single() does not expect there is another
text_poke request is queued, it can make text_poke_array not
sorted or cause a buffer overflow on the text_poke_array.vec[].
This will cause an Oops in int3 because of bsearch failing;
CPU 0 CPU 1 CPU 2
----- ----- -----
smp_text_poke_batch_add()
smp_text_poke_single() <<-- Adds out of order
<int3>
[Fails o find address
in text_poke_array ]
OOPS!
Or unhandled page fault because of a buffer overflow;
CPU 0 CPU 1
----- -----
smp_text_poke_batch_add() <<+
... |
smp_text_poke_batch_add() <<-- Adds TEXT_POKE_ARRAY_MAX times.
smp_text_poke_single() {
__smp_text_poke_batch_add() <<-- Adds entry at
TEXT_POKE_ARRAY_MAX + 1
smp_text_poke_batch_finish()
[Unhandled page fault because
text_poke_array.nr_entries is
overwritten]
BUG!
}
Use smp_text_poke_batch_add() instead of __smp_text_poke_batch_add()
so that it correctly flush the queue if needed.
Closes: https://lore.kernel.org/all/CA+G9fYsLu0roY3DV=tKyqP7FEKbOEETRvTDhnpPxJGbA=Cg+4w@mail.gmail.com/
Fixes: c8976ade0c ("x86/alternatives: Simplify smp_text_poke_single() by using tp_vec and existing APIs")
Reported-by: Linux Kernel Functional Testing <lkft@linaro.org>
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Tested-by: Linux Kernel Functional Testing <lkft@linaro.org>
Link: https://lkml.kernel.org/r/\ 175020512308.3582717.13631440385506146631.stgit@mhiramat.tok.corp.google.com
execmem_alloc() sets permissions differently depending on the kernel
configuration, CPU support for PSE and whether a page is allocated
before or after mark_rodata_ro().
Add tracking for pages allocated for ITS when patching the core kernel
and make sure the permissions for ITS pages are explicitly managed for
both kernel and module allocations.
Fixes: 872df34d7c ("x86/its: Use dynamic thunks for indirect branches")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Mike Rapoport (Microsoft) <rppt@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20250603111446.2609381-5-rppt@kernel.org
Fix several build errors when CONFIG_MODULES=n, including the following:
../arch/x86/kernel/alternative.c:195:25: error: incomplete definition of type 'struct module'
195 | for (int i = 0; i < mod->its_num_pages; i++) {
Fixes: 872df34d7c ("x86/its: Use dynamic thunks for indirect branches")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Tested-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
FineIBT-paranoid was using the retpoline bytes for the paranoid check,
disabling retpolines, because all parts that have IBT also have eIBRS
and thus don't need no stinking retpolines.
Except... ITS needs the retpolines for indirect calls must not be in
the first half of a cacheline :-/
So what was the paranoid call sequence:
<fineibt_paranoid_start>:
0: 41 ba 78 56 34 12 mov $0x12345678, %r10d
6: 45 3b 53 f7 cmp -0x9(%r11), %r10d
a: 4d 8d 5b <f0> lea -0x10(%r11), %r11
e: 75 fd jne d <fineibt_paranoid_start+0xd>
10: 41 ff d3 call *%r11
13: 90 nop
Now becomes:
<fineibt_paranoid_start>:
0: 41 ba 78 56 34 12 mov $0x12345678, %r10d
6: 45 3b 53 f7 cmp -0x9(%r11), %r10d
a: 4d 8d 5b f0 lea -0x10(%r11), %r11
e: 2e e8 XX XX XX XX cs call __x86_indirect_paranoid_thunk_r11
Where the paranoid_thunk looks like:
1d: <ea> (bad)
__x86_indirect_paranoid_thunk_r11:
1e: 75 fd jne 1d
__x86_indirect_its_thunk_r11:
20: 41 ff eb jmp *%r11
23: cc int3
[ dhansen: remove initialization to false ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
ITS mitigation moves the unsafe indirect branches to a safe thunk. This
could degrade the prediction accuracy as the source address of indirect
branches becomes same for different execution paths.
To improve the predictions, and hence the performance, assign a separate
thunk for each indirect callsite. This is also a defense-in-depth measure
to avoid indirect branches aliasing with each other.
As an example, 5000 dynamic thunks would utilize around 16 bits of the
address space, thereby gaining entropy. For a BTB that uses
32 bits for indexing, dynamic thunks could provide better prediction
accuracy over fixed thunks.
Have ITS thunks be variable sized and use EXECMEM_MODULE_TEXT such that
they are both more flexible (got to extend them later) and live in 2M TLBs,
just like kernel code, avoiding undue TLB pressure.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
cfi_rewrite_callers() updates the fineIBT hash matching at the caller side,
but except for paranoid-mode it relies on apply_retpoline() and friends for
any ENDBR relocation. This could temporarily cause an indirect branch to
land on a poisoned ENDBR.
For instance, with para-virtualization enabled, a simple wrmsrl() could
have an indirect branch pointing to native_write_msr() who's ENDBR has been
relocated due to fineIBT:
<wrmsrl>:
push %rbp
mov %rsp,%rbp
mov %esi,%eax
mov %rsi,%rdx
shr $0x20,%rdx
mov %edi,%edi
mov %rax,%rsi
call *0x21e65d0(%rip) # <pv_ops+0xb8>
^^^^^^^^^^^^^^^^^^^^^^^
Such an indirect call during the alternative patching could #CP if the
caller is not *yet* adjusted for the new target ENDBR. To prevent a false
#CP, keep CET-IBT disabled until all callers are patched.
Patching during the module load does not need to be guarded by IBT-disable
because the module code is not executed until the patching is complete.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
RETs in the lower half of cacheline may be affected by ITS bug,
specifically when the RSB-underflows. Use ITS-safe return thunk for such
RETs.
RETs that are not patched:
- RET in retpoline sequence does not need to be patched, because the
sequence itself fills an RSB before RET.
- RET in Call Depth Tracking (CDT) thunks __x86_indirect_{call|jump}_thunk
and call_depth_return_thunk are not patched because CDT by design
prevents RSB-underflow.
- RETs in .init section are not reachable after init.
- RETs that are explicitly marked safe with ANNOTATE_UNRET_SAFE.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Due to ITS, indirect branches in the lower half of a cacheline may be
vulnerable to branch target injection attack.
Introduce ITS-safe thunks to patch indirect branches in the lower half of
cacheline with the thunk. Also thunk any eBPF generated indirect branches
in emit_indirect_jump().
Below category of indirect branches are not mitigated:
- Indirect branches in the .init section are not mitigated because they are
discarded after boot.
- Indirect branches that are explicitly marked retpoline-safe.
Note that retpoline also mitigates the indirect branches against ITS. This
is because the retpoline sequence fills an RSB entry before RET, and it
does not suffer from RSB-underflow part of the ITS.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
struct text_poke_array is an equivalent structure to these global variables:
static struct smp_text_poke_loc tp_vec[TP_VEC_MAX];
static int tp_vec_nr;
Note that we intentionally mirror much of the naming of
'struct text_poke_int3_vec', which will further highlight
the unecessary layering going on in this code, and will
ease its removal.
No change in functionality.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250411054105.2341982-28-mingo@kernel.org
There's this weird hack used by smp_text_poke_batch_finish() to indicate
a 'forced flush':
smp_text_poke_batch_flush(NULL);
Just open-code the vector-flush in a straightforward fashion:
smp_text_poke_batch_process(tp_vec, tp_vec_nr);
tp_vec_nr = 0;
And get rid of !addr hack from text_poke_addr_ordered().
Leave a WARN_ON_ONCE(), just in case some external code learned
to rely on this behavior.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250411054105.2341982-24-mingo@kernel.org
It's possible to escape the text_mutex-held assert in
smp_text_poke_batch_process() if the caller uses a properly
batched and sorted series of patch requests, so add
an explicit lockdep_assert_held() to make sure it's
held by all callers.
All text_poke_int3_*() APIs will call either smp_text_poke_batch_process()
or smp_text_poke_batch_flush() internally.
The text_mutex must be held, because tp_vec and tp_vec_nr et al
are all globals, and the INT3 patching machinery itself relies on
external serialization.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250411054105.2341982-22-mingo@kernel.org