The term "receiver" means that a type can be used as the type of `self`,
and thus enables method call syntax `foo.bar()` instead of
`Foo::bar(foo)`. Stable Rust as of today (1.81) enables a limited
selection of types (primitives and types in std, e.g. `Box` and `Arc`)
to be used as receivers, while custom types cannot.
We want the kernel `Arc` type to have the same functionality as the Rust
std `Arc`, so we use the `Receiver` trait (gated behind `receiver_trait`
unstable feature) to gain the functionality.
The `arbitrary_self_types` RFC [1] (tracking issue [2]) is accepted and
it will allow all types that implement a new `Receiver` trait (different
from today's unstable trait) to be used as receivers. This trait will be
automatically implemented for all `Deref` types, which include our `Arc`
type, so we no longer have to opt-in to be used as receiver. To prepare
us for the change, remove the `Receiver` implementation and the
associated feature. To still allow `Arc` and others to be used as method
receivers, turn on `arbitrary_self_types` feature instead.
This feature gate is introduced in 1.23.0. It used to enable both
`Deref` types and raw pointer types to be used as receivers, but the
latter is now split into a different feature gate in Rust 1.83 nightly.
We do not need receivers on raw pointers so this change would not affect
us and usage of `arbitrary_self_types` feature would work for all Rust
versions that we support (>=1.78).
Cc: Adrian Taylor <ade@hohum.me.uk>
Link: https://github.com/rust-lang/rfcs/pull/3519 [1]
Link: https://github.com/rust-lang/rust/issues/44874 [2]
Signed-off-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915132734.1653004-1-gary@garyguo.net
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
In Rust, it is possible to `allow` particular warnings (diagnostics,
lints) locally, making the compiler ignore instances of a given warning
within a given function, module, block, etc.
It is similar to `#pragma GCC diagnostic push` + `ignored` + `pop` in C:
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
static void f(void) {}
#pragma GCC diagnostic pop
But way less verbose:
#[allow(dead_code)]
fn f() {}
By that virtue, it makes it possible to comfortably enable more
diagnostics by default (i.e. outside `W=` levels) that may have some
false positives but that are otherwise quite useful to keep enabled to
catch potential mistakes.
The `#[expect(...)]` attribute [1] takes this further, and makes the
compiler warn if the diagnostic was _not_ produced. For instance, the
following will ensure that, when `f()` is called somewhere, we will have
to remove the attribute:
#[expect(dead_code)]
fn f() {}
If we do not, we get a warning from the compiler:
warning: this lint expectation is unfulfilled
--> x.rs:3:10
|
3 | #[expect(dead_code)]
| ^^^^^^^^^
|
= note: `#[warn(unfulfilled_lint_expectations)]` on by default
This means that `expect`s do not get forgotten when they are not needed.
See the next commit for more details, nuances on its usage and
documentation on the feature.
The attribute requires the `lint_reasons` [2] unstable feature, but it
is becoming stable in 1.81.0 (to be released on 2024-09-05) and it has
already been useful to clean things up in this patch series, finding
cases where the `allow`s should not have been there.
Thus, enable `lint_reasons` and convert some of our `allow`s to `expect`s
where possible.
This feature was also an example of the ongoing collaboration between
Rust and the kernel -- we tested it in the kernel early on and found an
issue that was quickly resolved [3].
Cc: Fridtjof Stoldt <xfrednet@gmail.com>
Cc: Urgau <urgau@numericable.fr>
Link: https://rust-lang.github.io/rfcs/2383-lint-reasons.html#expect-lint-attribute [1]
Link: https://github.com/rust-lang/rust/issues/54503 [2]
Link: https://github.com/rust-lang/rust/issues/114557 [3]
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-18-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
The tag `SAFETY` is used for safety comments, i.e. `// SAFETY`, while a
`Safety` section is used for safety preconditions in code documentation,
i.e. `/// # Safety`.
Fix the three instances recently added in `rbtree` that Clippy would
have normally caught in a public item, so that we can enable checking
of private items in one of the following commits.
Fixes: 98c14e40e0 ("rust: rbtree: add cursor")
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-14-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Back when we used Rust 1.60.0 (before Rust was merged in the kernel),
we added `-Wclippy::dbg_macro` to the compilation flags. This worked
great with our custom `dbg!` macro (vendored from `std`, but slightly
modified to use the kernel printing facilities).
However, in the very next version, 1.61.0, it stopped working [1] since
the lint started to use a Rust diagnostic item rather than a path to find
the `dbg!` macro [1]. This behavior remains until the current nightly
(1.83.0).
Therefore, currently, the `dbg_macro` is not doing anything, which
explains why we can invoke `dbg!` in samples/rust/rust_print.rs`, as well
as why changing the `#[allow()]`s to `#[expect()]`s in `std_vendor.rs`
doctests does not work since they are not fulfilled.
One possible workaround is using `rustc_attrs` like the standard library
does. However, this is intended to be internal, and we just started
supporting several Rust compiler versions, so it is best to avoid it.
Therefore, instead, use `disallowed_macros`. It is a stable lint and
is more flexible (in that we can provide different macros), although
its diagnostic message(s) are not as nice as the specialized one (yet),
and does not allow to set different lint levels per macro/path [2].
In turn, this requires allowing the (intentional) `dbg!` use in the
sample, as one would have expected.
Finally, in a single case, the `allow` is fixed to be an inner attribute,
since otherwise it was not being applied.
Link: https://github.com/rust-lang/rust-clippy/issues/11303 [1]
Link: https://github.com/rust-lang/rust-clippy/issues/11307 [2]
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-13-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Rust 1.58.0 (before Rust was merged into the kernel) made Clippy's
`non_send_fields_in_send_ty` lint part of the `suspicious` lint group for
a brief window of time [1] until the minor version 1.58.1 got released
a week after, where the lint was moved back to `nursery`.
By that time, we had already upgraded to that Rust version, and thus we
had `allow`ed the lint here for `CondVar`.
Nowadays, Clippy's `non_send_fields_in_send_ty` would still trigger here
if it were enabled.
Moreover, if enabled, `Lock<T, B>` and `Task` would also require an
`allow`. Therefore, it does not seem like someone is actually enabling it
(in, e.g., a custom flags build).
Finally, the lint does not appear to have had major improvements since
then [2].
Thus remove the `allow` since it is unneeded.
Link: https://github.com/rust-lang/rust/blob/master/RELEASES.md#version-1581-2022-01-20 [1]
Link: https://github.com/rust-lang/rust-clippy/issues/8045 [2]
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-11-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
In order to provide `// SAFETY` comments for every `unsafe impl`, we would
need to repeat them, which is not very useful and would be harder to read.
We could perhaps allow the lint (ideally within a small module), but we
can take the chance to avoid the repetition of the `impl`s themselves
too by using a small local macro, like in other places where we have
had to do this sort of thing.
Thus add the straightforward `impl_{from,as}bytes!` macros and use them
to implement `FromBytes`.
This, in turn, will allow us in the next patch to place a `// SAFETY`
comment that defers to the actual invocation of the macro.
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Tested-by: Gary Guo <gary@garyguo.net>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240904204347.168520-4-ojeda@kernel.org
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
device_table in module_phy_driver macro is defined only when the
driver is built as a module. So a PHY driver imports phy::DeviceId
module in the following way then hits `unused import` warning when
it's compiled as built-in:
use kernel::net::phy::DeviceId;
kernel::module_phy_driver! {
drivers: [PhyQT2025],
device_table: [
DeviceId::new_with_driver::<PhyQT2025>(),
],
Put device_table in a const. It's not included in the kernel image if
unused (when the driver is compiled as built-in), and the compiler
doesn't complain.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Link: https://patch.msgid.link/20240930134038.1309-1-fujita.tomonori@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The function Device::from_raw() increments a refcount by a call to
bindings::get_device(ptr). This can be confused because usually
from_raw() functions don't increment a refcount.
Hence, rename Device::from_raw() to avoid confuion with other "from_raw"
semantics.
The new name of function should be "get_device" to be consistent with
the function get_device() already exist in .c files.
This function body also changed, because the `into()` will convert the
`&'a Device` into `ARef<Device>` and also call `inc_ref` from the
`AlwaysRefCounted` trait implemented for Device.
Signed-off-by: Guilherme Giacomo Simoes <trintaeoitogc@gmail.com>
Acked-by: Danilo Krummrich <dakr@kernel.org>
Closes: https://github.com/Rust-for-Linux/linux/issues/1088
Reviewed-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20241001205603.106278-1-trintaeoitogc@gmail.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
The existing `CondVar` abstraction is a wrapper around
`wait_queue_head`, but it does not support all use-cases of the C
`wait_queue_head` type. To be specific, a `CondVar` cannot be registered
with a `struct poll_table`. This limitation has the advantage that you
do not need to call `synchronize_rcu` when destroying a `CondVar`.
However, we need the ability to register a `poll_table` with a
`wait_queue_head` in Rust Binder. To enable this, introduce a type
called `PollCondVar`, which is like `CondVar` except that you can
register a `poll_table`. We also introduce `PollTable`, which is a safe
wrapper around `poll_table` that is intended to be used with
`PollCondVar`.
The destructor of `PollCondVar` unconditionally calls `synchronize_rcu`
to ensure that the removal of epoll waiters has fully completed before
the `wait_queue_head` is destroyed.
That said, `synchronize_rcu` is rather expensive and is not needed in
all cases: If we have never registered a `poll_table` with the
`wait_queue_head`, then we don't need to call `synchronize_rcu`. (And
this is a common case in Binder - not all processes use Binder with
epoll.) The current implementation does not account for this, but if we
find that it is necessary to improve this, a future patch could store a
boolean next to the `wait_queue_head` to keep track of whether a
`poll_table` has ever been registered.
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915-alice-file-v10-8-88484f7a3dcf@google.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
Adds a wrapper around `kuid_t` called `Kuid`. This allows us to define
various operations on kuids such as equality and current_euid. It also
lets us provide conversions from kuid into userspace values.
Rust Binder needs these operations because it needs to compare kuids for
equality, and it needs to tell userspace about the pid and uid of
incoming transactions.
To read kuids from a `struct task_struct`, you must currently use
various #defines that perform the appropriate field access under an RCU
read lock. Currently, we do not have a Rust wrapper for rcu_read_lock,
which means that for this patch, there are two ways forward:
1. Inline the methods into Rust code, and use __rcu_read_lock directly
rather than the rcu_read_lock wrapper. This gives up lockdep for
these usages of RCU.
2. Wrap the various #defines in helpers and call the helpers from Rust.
This patch uses the second option. One possible disadvantage of the
second option is the possible introduction of speculation gadgets, but
as discussed in [1], the risk appears to be acceptable.
Of course, once a wrapper for rcu_read_lock is available, it is
preferable to use that over either of the two above approaches.
Link: https://lore.kernel.org/all/202312080947.674CD2DC7@keescook/ [1]
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915-alice-file-v10-7-88484f7a3dcf@google.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
Allow for the creation of a file descriptor in two steps: first, we
reserve a slot for it, then we commit or drop the reservation. The first
step may fail (e.g., the current process ran out of available slots),
but commit and drop never fail (and are mutually exclusive).
This is needed by Rust Binder when fds are sent from one process to
another. It has to be a two-step process to properly handle the case
where multiple fds are sent: The operation must fail or succeed
atomically, which we achieve by first reserving the fds we need, and
only installing the files once we have reserved enough fds to send the
files.
Fd reservations assume that the value of `current` does not change
between the call to get_unused_fd_flags and the call to fd_install (or
put_unused_fd). By not implementing the Send trait, this abstraction
ensures that the `FileDescriptorReservation` cannot be moved into a
different process.
Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Co-developed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915-alice-file-v10-6-88484f7a3dcf@google.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
Add an abstraction for viewing the string representation of a security
context.
This is needed by Rust Binder because it has a feature where a process
can view the string representation of the security context for incoming
transactions. The process can use that to authenticate incoming
transactions, and since the feature is provided by the kernel, the
process can trust that the security context is legitimate.
This abstraction makes the following assumptions about the C side:
* When a call to `security_secid_to_secctx` is successful, it returns a
pointer and length. The pointer references a byte string and is valid
for reading for that many bytes.
* The string may be referenced until `security_release_secctx` is
called.
* If CONFIG_SECURITY is set, then the three methods mentioned in
rust/helpers are available without a helper. (That is, they are not a
#define or `static inline`.)
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915-alice-file-v10-5-88484f7a3dcf@google.com
Acked-by: Paul Moore <paul@paul-moore.com>
Reviewed-by: Kees Cook <kees@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Add a wrapper around `struct cred` called `Credential`, and provide
functionality to get the `Credential` associated with a `File`.
Rust Binder must check the credentials of processes when they attempt to
perform various operations, and these checks usually take a
`&Credential` as parameter. The security_binder_set_context_mgr function
would be one example. This patch is necessary to access these security_*
methods from Rust.
This Rust abstraction makes the following assumptions about the C side:
* `struct cred` is refcounted with `get_cred`/`put_cred`.
* It's okay to transfer a `struct cred` across threads, that is, you do
not need to call `put_cred` on the same thread as where you called
`get_cred`.
* The `euid` field of a `struct cred` never changes after
initialization.
* The `f_cred` field of a `struct file` never changes after
initialization.
Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Co-developed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Martin Rodriguez Reboredo <yakoyoku@gmail.com>
Reviewed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915-alice-file-v10-4-88484f7a3dcf@google.com
Reviewed-by: Kees Cook <kees@kernel.org>
Reviewed-by: Paul Moore <paul@paul-moore.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
This abstraction makes it possible to manipulate the open files for a
process. The new `File` struct wraps the C `struct file`. When accessing
it using the smart pointer `ARef<File>`, the pointer will own a
reference count to the file. When accessing it as `&File`, then the
reference does not own a refcount, but the borrow checker will ensure
that the reference count does not hit zero while the `&File` is live.
Since this is intended to manipulate the open files of a process, we
introduce an `fget` constructor that corresponds to the C `fget`
method. In future patches, it will become possible to create a new fd in
a process and bind it to a `File`. Rust Binder will use these to send
fds from one process to another.
We also provide a method for accessing the file's flags. Rust Binder
will use this to access the flags of the Binder fd to check whether the
non-blocking flag is set, which affects what the Binder ioctl does.
This introduces a struct for the EBADF error type, rather than just
using the Error type directly. This has two advantages:
* `File::fget` returns a `Result<ARef<File>, BadFdError>`, which the
compiler will represent as a single pointer, with null being an error.
This is possible because the compiler understands that `BadFdError`
has only one possible value, and it also understands that the
`ARef<File>` smart pointer is guaranteed non-null.
* Additionally, we promise to users of the method that the method can
only fail with EBADF, which means that they can rely on this promise
without having to inspect its implementation.
That said, there are also two disadvantages:
* Defining additional error types involves boilerplate.
* The question mark operator will only utilize the `From` trait once,
which prevents you from using the question mark operator on
`BadFdError` in methods that return some third error type that the
kernel `Error` is convertible into. (However, it works fine in methods
that return `Error`.)
Signed-off-by: Wedson Almeida Filho <wedsonaf@gmail.com>
Co-developed-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Co-developed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240915-alice-file-v10-3-88484f7a3dcf@google.com
Reviewed-by: Gary Guo <gary@garyguo.net>
Signed-off-by: Christian Brauner <brauner@kernel.org>
The `LockedBy::access` method only requires a shared reference to the
owner, so if we have shared access to the `LockedBy` from several
threads at once, then two threads could call `access` in parallel and
both obtain a shared reference to the inner value. Thus, require that
`T: Sync` when calling the `access` method.
An alternative is to require `T: Sync` in the `impl Sync for LockedBy`.
This patch does not choose that approach as it gives up the ability to
use `LockedBy` with `!Sync` types, which is okay as long as you only use
`access_mut`.
Cc: stable@vger.kernel.org
Fixes: 7b1f55e3a9 ("rust: sync: introduce `LockedBy`")
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Suggested-by: Boqun Feng <boqun.feng@gmail.com>
Reviewed-by: Gary Guo <gary@garyguo.net>
Link: https://lore.kernel.org/r/20240915-locked-by-sync-fix-v2-1-1a8d89710392@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Pull Rust updates from Miguel Ojeda:
"Toolchain and infrastructure:
- Support 'MITIGATION_{RETHUNK,RETPOLINE,SLS}' (which cleans up
objtool warnings), teach objtool about 'noreturn' Rust symbols and
mimic '___ADDRESSABLE()' for 'module_{init,exit}'. With that, we
should be objtool-warning-free, so enable it to run for all Rust
object files.
- KASAN (no 'SW_TAGS'), KCFI and shadow call sanitizer support.
- Support 'RUSTC_VERSION', including re-config and re-build on
change.
- Split helpers file into several files in a folder, to avoid
conflicts in it. Eventually those files will be moved to the right
places with the new build system. In addition, remove the need to
manually export the symbols defined there, reusing existing
machinery for that.
- Relax restriction on configurations with Rust + GCC plugins to just
the RANDSTRUCT plugin.
'kernel' crate:
- New 'list' module: doubly-linked linked list for use with reference
counted values, which is heavily used by the upcoming Rust Binder.
This includes 'ListArc' (a wrapper around 'Arc' that is guaranteed
unique for the given ID), 'AtomicTracker' (tracks whether a
'ListArc' exists using an atomic), 'ListLinks' (the prev/next
pointers for an item in a linked list), 'List' (the linked list
itself), 'Iter' (an iterator over a 'List'), 'Cursor' (a cursor
into a 'List' that allows to remove elements), 'ListArcField' (a
field exclusively owned by a 'ListArc'), as well as support for
heterogeneous lists.
- New 'rbtree' module: red-black tree abstractions used by the
upcoming Rust Binder.
This includes 'RBTree' (the red-black tree itself), 'RBTreeNode' (a
node), 'RBTreeNodeReservation' (a memory reservation for a node),
'Iter' and 'IterMut' (immutable and mutable iterators), 'Cursor'
(bidirectional cursor that allows to remove elements), as well as
an entry API similar to the Rust standard library one.
- 'init' module: add 'write_[pin_]init' methods and the
'InPlaceWrite' trait. Add the 'assert_pinned!' macro.
- 'sync' module: implement the 'InPlaceInit' trait for 'Arc' by
introducing an associated type in the trait.
- 'alloc' module: add 'drop_contents' method to 'BoxExt'.
- 'types' module: implement the 'ForeignOwnable' trait for
'Pin<Box<T>>' and improve the trait's documentation. In addition,
add the 'into_raw' method to the 'ARef' type.
- 'error' module: in preparation for the upcoming Rust support for
32-bit architectures, like arm, locally allow Clippy lint for
those.
Documentation:
- https://rust.docs.kernel.org has been announced, so link to it.
- Enable rustdoc's "jump to definition" feature, making its output a
bit closer to the experience in a cross-referencer.
- Debian Testing now also provides recent Rust releases (outside of
the freeze period), so add it to the list.
MAINTAINERS:
- Trevor is joining as reviewer of the "RUST" entry.
And a few other small bits"
* tag 'rust-6.12' of https://github.com/Rust-for-Linux/linux: (54 commits)
kasan: rust: Add KASAN smoke test via UAF
kbuild: rust: Enable KASAN support
rust: kasan: Rust does not support KHWASAN
kbuild: rust: Define probing macros for rustc
kasan: simplify and clarify Makefile
rust: cfi: add support for CFI_CLANG with Rust
cfi: add CONFIG_CFI_ICALL_NORMALIZE_INTEGERS
rust: support for shadow call stack sanitizer
docs: rust: include other expressions in conditional compilation section
kbuild: rust: replace proc macros dependency on `core.o` with the version text
kbuild: rust: rebuild if the version text changes
kbuild: rust: re-run Kconfig if the version text changes
kbuild: rust: add `CONFIG_RUSTC_VERSION`
rust: avoid `box_uninit_write` feature
MAINTAINERS: add Trevor Gross as Rust reviewer
rust: rbtree: add `RBTree::entry`
rust: rbtree: add cursor
rust: rbtree: add mutable iterator
rust: rbtree: add iterator
rust: rbtree: add red-black tree implementation backed by the C version
...
Add unified genphy_read_status function for C22 and C45
registers. Instead of having genphy_c22 and genphy_c45 methods, this
unifies genphy_read_status functions for C22 and C45.
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add the unified read/write API for C22 and C45 registers. The
abstractions support access to only C22 registers now. Instead of
adding read/write_c45 methods specifically for C45, a new reg module
supports the unified API to access C22 and C45 registers with trait,
by calling an appropriate phylib functions.
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add rust equivalent to include/linux/sizes.h, makes code more
readable. Only SZ_*K that QT2025 PHY driver uses are added.
Make generated constants accessible with a proper type.
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Upstream Rust's libs-api team has consensus for stabilizing some of
`feature(new_uninit)`, but not for `Box<MaybeUninit<T>>::write`. Instead,
we can use `MaybeUninit<T>::write`, so Rust for Linux can drop the
feature after stabilization. That will happen after merging, as the FCP
has completed [1].
This is required before stabilization because remaining-unstable API
will be divided into new features. This code doesn't know about those
yet. It can't: they haven't landed, as the relevant PR is blocked on
rustc's CI testing Rust-for-Linux without this patch.
[ The PR has landed [2] and will be released in Rust 1.82.0 (expected on
2024-10-17), so we could conditionally enable the new unstable feature
(`box_uninit_write` [3]) instead, but just for a single `unsafe` block
it is probably not worth it. For the time being, I added it to the
"nice to have" section of our unstable features list. - Miguel ]
Link: https://github.com/rust-lang/rust/issues/63291#issuecomment-2183022955 [1]
Link: https://github.com/rust-lang/rust/pull/129416 [2]
Link: https://github.com/rust-lang/rust/issues/129397 [3]
Signed-off-by: Jubilee Young <workingjubilee@gmail.com>
Reviewed-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Trevor Gross <tmgross@umich.edu>
[ Reworded slightly. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Add a method for `ARef` that is analogous to `Arc::into_raw`. It is the
inverse operation of `ARef::from_raw`, and allows you to convert the
`ARef` back into a raw pointer while retaining ownership of the
refcount.
This new function will be used by [1] for converting the type in an
`ARef` using `ARef::from_raw(ARef::into_raw(me).cast())`. Alice has
also needed the same function for other use-cases in the past, but [1]
is the first to go upstream.
This was implemented independently by Kartik and Alice. The two versions
were merged by Alice, so all mistakes are Alice's.
Link: https://lore.kernel.org/r/20240801-vma-v3-1-db6c1c0afda9@google.com [1]
Link: https://github.com/Rust-for-Linux/linux/issues/1044
Signed-off-by: Kartik Prajapati <kartikprajapati987@gmail.com>
Co-developed-by: Alice Ryhl <aliceryhl@google.com>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
[ Reworded to correct the author reference and changed tag to Link
since it is not a bug. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
One way to explain what `ListArc` does is that it controls exclusive
access to the prev/next pointer field in a refcounted object. The
feature of having a special reference to a refcounted object with
exclusive access to specific fields is useful for other things, so
provide a general utility for that.
This is used by Rust Binder to keep track of which processes have a
reference to a given node. This involves an object for each process/node
pair, that is referenced by both the process and the node. For some
fields in this object, only the process's reference needs to access
them (and it needs mutable access), so Binder uses a ListArc to give the
process's reference exclusive access.
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240814-linked-list-v5-10-f5f5e8075da0@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Support linked lists that can hold many different structs at once. This
is generally done using trait objects. The main challenge is figuring
what the struct is given only a pointer to the ListLinks.
We do this by storing a pointer to the struct next to the ListLinks
field. The container_of operation will then just read that pointer. When
the type is a trait object, that pointer will be a fat pointer whose
metadata is a vtable that tells you what kind of struct it is.
Heterogeneous lists are heavily used by Rust Binder. There are a lot of
so-called todo lists containing various events that need to be delivered
to userspace next time userspace calls into the driver. And there are
quite a few different todo item types: incoming transaction, changes to
refcounts, death notifications, and more.
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240814-linked-list-v5-9-f5f5e8075da0@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
The cursor is very similar to the list iterator, but it has one
important feature that the iterator doesn't: it can be used to remove
items from the linked list.
This feature cannot be added to the iterator because the references you
get from the iterator are considered borrows of the original list,
rather than borrows of the iterator. This means that there's no way to
prevent code like this:
let item = iter.next();
iter.remove();
use(item);
If `iter` was a cursor instead of an iterator, then `item` will be
considered a borrow of `iter`. Since `remove` destroys `iter`, this
means that the borrow-checker will prevent uses of `item` after the call
to `remove`.
So there is a trade-off between supporting use in traditional for loops,
and supporting removal of elements as you iterate. Iterators and cursors
represents two different choices on that spectrum.
Rust Binder needs cursors for the list of death notifications that a
process is currently handling. When userspace tells Binder that it has
finished processing the death notification, Binder will iterate the list
to search for the relevant item and remove it.
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240814-linked-list-v5-8-f5f5e8075da0@google.com
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
Add the actual linked list itself.
The linked list uses the following design: The List type itself just has
a single pointer to the first element of the list. And the actual list
items then form a cycle. So the last item is `first->prev`.
This is slightly different from the usual kernel linked list. Matching
that exactly would amount to giving List two pointers, and having it be
part of the cycle of items. This alternate design has the advantage that
the cycle is never completely empty, which can reduce the number of
branches in some cases. However, it also has the disadvantage that List
must be pinned, which this design is trying to avoid.
Having the list items form a cycle rather than having null pointers at
the beginning/end is convenient for several reasons. For one, it lets us
store only one pointer in List, and it simplifies the implementation of
several functions.
Unfortunately, the `remove` function that removes an arbitrary element
from the list has to be unsafe. This is needed because there is no way
to handle the case where you pass an element from the wrong list. For
example, if it is the first element of some other list, then that other
list's `first` pointer would not be updated. Similarly, it could be a
data race if you try to remove it from two different lists in parallel.
(There's no problem with passing `remove` an item that's not in any
list. Additionally, other removal methods such as `pop_front` need not
be unsafe, as they can't be used to remove items from another list.)
A future patch in this series will introduce support for cursors that
can be used to remove arbitrary items without unsafe code.
Reviewed-by: Benno Lossin <benno.lossin@proton.me>
Signed-off-by: Alice Ryhl <aliceryhl@google.com>
Link: https://lore.kernel.org/r/20240814-linked-list-v5-6-f5f5e8075da0@google.com
[ Fixed a few typos. - Miguel ]
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>