Introduce a factor which would apply to the NMI watchdog timeout.
This factor is a percentage added to the watchdog_tresh value. The value is
set under the watchdog_mutex protection and lockup_detector_reconfigure()
is called to recompute wd_panic_timeout_tb.
Once the factor is set, it remains until it is set back to 0, which means
no impact.
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Reviewed-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713154729.80789-4-ldufour@linux.ibm.com
The archrandom interface was originally designed for x86, which supplies
RDRAND/RDSEED for receiving random words into registers, resulting in
one function to generate an int and another to generate a long. However,
other architectures don't follow this.
On arm64, the SMCCC TRNG interface can return between one and three
longs. On s390, the CPACF TRNG interface can return arbitrary amounts,
with four longs having the same cost as one. On UML, the os_getrandom()
interface can return arbitrary amounts.
So change the api signature to take a "max_longs" parameter designating
the maximum number of longs requested, and then return the number of
longs generated.
Since callers need to check this return value and loop anyway, each arch
implementation does not bother implementing its own loop to try again to
fill the maximum number of longs. Additionally, all existing callers
pass in a constant max_longs parameter. Taken together, these two things
mean that the codegen doesn't really change much for one-word-at-a-time
platforms, while performance is greatly improved on platforms such as
s390.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
The isa_dma_bridge_buggy symbol is only used for x86_32, and only x86_32
platforms or quirks ever set it.
Add a new linux/isa-dma.h header that #defines isa_dma_bridge_buggy to 0
except on x86_32, where we keep it as a variable, and remove all the arch-
specific definitions.
[bhelgaas: commit log]
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Suggested-by: Christoph Hellwig <hch@infradead.org>
Link: https://lore.kernel.org/r/20220722214944.831438-3-shorne@gmail.com
Signed-off-by: Stafford Horne <shorne@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
pci_get_legacy_ide_irq() is only used on platforms that support PNP, so
many architectures define it but never use it. Replace uses of it with
ATA_PRIMARY_IRQ() and ATA_SECONDARY_IRQ(), which provide the same
functionality.
Since pci_get_legacy_ide_irq() is no longer used, remove all the
architecture-specific definitions of it as well as asm-generic/pci.h, which
only provides pci_get_legacy_ide_irq()
[bhelgaas: commit log]
Co-developed-by: Arnd Bergmann <arnd@arndb.de>
Link: https://lore.kernel.org/r/20220722214944.831438-2-shorne@gmail.com
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Stafford Horne <shorne@gmail.com>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Pierre Morel <pmorel@linux.ibm.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Scattered across the archs are 3 basic forms of tlb_{start,end}_vma().
Provide two new MMU_GATHER_knobs to enumerate them and remove the per
arch tlb_{start,end}_vma() implementations.
- MMU_GATHER_NO_FLUSH_CACHE indicates the arch has flush_cache_range()
but does *NOT* want to call it for each VMA.
- MMU_GATHER_MERGE_VMAS indicates the arch wants to merge the
invalidate across multiple VMAs if possible.
With these it is possible to capture the three forms:
1) empty stubs;
select MMU_GATHER_NO_FLUSH_CACHE and MMU_GATHER_MERGE_VMAS
2) start: flush_cache_range(), end: empty;
select MMU_GATHER_MERGE_VMAS
3) start: flush_cache_range(), end: flush_tlb_range();
default
Obviously, if the architecture does not have flush_cache_range() then
it also doesn't need to select MMU_GATHER_NO_FLUSH_CACHE.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Will Deacon <will@kernel.org>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PAPR v2.12 specifies a new optional function set, "hcall-watchdog",
for the /rtas/ibm,hypertas-functions property. The presence of this
function set indicates support for the H_WATCHDOG hypercall.
Check for this function set and, if present, set the new
FW_FEATURE_WATCHDOG flag.
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713202335.1217647-3-cheloha@linux.ibm.com
PAPR v2.12 defines a new hypercall, H_WATCHDOG. The hypercall permits
guest control of one or more virtual watchdog timers.
Add the opcode for the H_WATCHDOG hypercall to hvcall.h. While here,
add a definition for H_NOOP, a possible return code for H_WATCHDOG.
Signed-off-by: Scott Cheloha <cheloha@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220713202335.1217647-2-cheloha@linux.ibm.com
When RDRAND was introduced, there was much discussion on whether it
should be trusted and how the kernel should handle that. Initially, two
mechanisms cropped up, CONFIG_ARCH_RANDOM, a compile time switch, and
"nordrand", a boot-time switch.
Later the thinking evolved. With a properly designed RNG, using RDRAND
values alone won't harm anything, even if the outputs are malicious.
Rather, the issue is whether those values are being *trusted* to be good
or not. And so a new set of options were introduced as the real
ones that people use -- CONFIG_RANDOM_TRUST_CPU and "random.trust_cpu".
With these options, RDRAND is used, but it's not always credited. So in
the worst case, it does nothing, and in the best case, maybe it helps.
Along the way, CONFIG_ARCH_RANDOM's meaning got sort of pulled into the
center and became something certain platforms force-select.
The old options don't really help with much, and it's a bit odd to have
special handling for these instructions when the kernel can deal fine
with the existence or untrusted existence or broken existence or
non-existence of that CPU capability.
Simplify the situation by removing CONFIG_ARCH_RANDOM and using the
ordinary asm-generic fallback pattern instead, keeping the two options
that are actually used. For now it leaves "nordrand" for now, as the
removal of that will take a different route.
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
As requested
(http://lkml.kernel.org/r/87ee0q7b92.fsf@email.froward.int.ebiederm.org),
this series converts weak functions in kexec to use the #ifdef approach.
Quoting the 3e35142ef9 ("kexec_file: drop weak attribute from
arch_kexec_apply_relocations[_add]") changelog:
: Since commit d1bcae833b32f1 ("ELF: Don't generate unused section symbols")
: [1], binutils (v2.36+) started dropping section symbols that it thought
: were unused. This isn't an issue in general, but with kexec_file.c, gcc
: is placing kexec_arch_apply_relocations[_add] into a separate
: .text.unlikely section and the section symbol ".text.unlikely" is being
: dropped. Due to this, recordmcount is unable to find a non-weak symbol in
: .text.unlikely to generate a relocation record against.
This patch (of 2);
Drop __weak attribute from functions in kexec_file.c:
- arch_kexec_kernel_image_probe()
- arch_kimage_file_post_load_cleanup()
- arch_kexec_kernel_image_load()
- arch_kexec_locate_mem_hole()
- arch_kexec_kernel_verify_sig()
arch_kexec_kernel_image_load() calls into kexec_image_load_default(), so
drop the static attribute for the latter.
arch_kexec_kernel_verify_sig() is not overridden by any architecture, so
drop the __weak attribute.
Link: https://lkml.kernel.org/r/cover.1656659357.git.naveen.n.rao@linux.vnet.ibm.com
Link: https://lkml.kernel.org/r/2cd7ca1fe4d6bb6ca38e3283c717878388ed6788.1656659357.git.naveen.n.rao@linux.vnet.ibm.com
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Suggested-by: Eric Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
Merge our fixes branch. In particular this brings in commit
9864816180 ("powerpc/book3e: Fix PUD allocation size in
map_kernel_page()") which fixes a build failure in next, because commit
2db2008e63 ("powerpc/64e: Rewrite p4d_populate() as a static inline
function") depends on it.
Trying to build a .c file that includes <linux/bpf_perf_event.h>:
$ cat test_bpf_headers.c
#include <linux/bpf_perf_event.h>
throws the below error:
/usr/include/linux/bpf_perf_event.h:14:28: error: field ‘regs’ has incomplete type
14 | bpf_user_pt_regs_t regs;
| ^~~~
This is because we typedef bpf_user_pt_regs_t to 'struct user_pt_regs'
in arch/powerpc/include/uaps/asm/bpf_perf_event.h, but 'struct
user_pt_regs' is not exposed to userspace.
Powerpc has both pt_regs and user_pt_regs structures. However, unlike
arm64 and s390, we expose user_pt_regs to userspace as just 'pt_regs'.
As such, we should typedef bpf_user_pt_regs_t to 'struct pt_regs' for
userspace.
Within the kernel though, we want to typedef bpf_user_pt_regs_t to
'struct user_pt_regs'.
Remove arch/powerpc/include/uapi/asm/bpf_perf_event.h so that the
uapi/asm-generic version of the header is exposed to userspace.
Introduce arch/powerpc/include/asm/bpf_perf_event.h so that we can
typedef bpf_user_pt_regs_t to 'struct user_pt_regs' for use within the
kernel.
Note that this was not showing up with the bpf selftest build since
tools/include/uapi/asm/bpf_perf_event.h didn't include the powerpc
variant.
Fixes: a6460b03f9 ("powerpc/bpf: Fix broken uapi for BPF_PROG_TYPE_PERF_EVENT")
Cc: stable@vger.kernel.org # v4.20+
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
[mpe: Use typical naming for header include guard]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220627191119.142867-1-naveen.n.rao@linux.vnet.ibm.com
The ppc_inst_as_str() macro tries to make printing variable length,
aka "prefixed", instructions convenient. It mostly succeeds, but it does
hide an on-stack buffer, which triggers stack protector.
More problematically it doesn't compile at all with GCC 12,
with -Wdangling-pointer, due to the fact that it returns the char buffer
declared inside the macro:
arch/powerpc/kernel/trace/ftrace.c: In function '__ftrace_modify_call':
./include/linux/printk.h:475:44: error: using a dangling pointer to '__str' [-Werror=dangling-pointer=]
475 | #define printk(fmt, ...) printk_index_wrap(_printk, fmt, ##__VA_ARGS__)
...
arch/powerpc/kernel/trace/ftrace.c:567:17: note: in expansion of macro 'pr_err'
567 | pr_err("Not expected bl: opcode is %s\n", ppc_inst_as_str(op));
| ^~~~~~
./arch/powerpc/include/asm/inst.h:156:14: note: '__str' declared here
156 | char __str[PPC_INST_STR_LEN]; \
| ^~~~~
This could be fixed by having the caller declare the buffer, but in some
places there'd need to be two buffers. In all cases where
ppc_inst_as_str() is used the output is not really meant for user
consumption, it's almost always indicative of a kernel bug.
A simpler solution is to just print the value as an unsigned long. For
normal instructions the output is identical. For prefixed instructions
the value is printed as a single 64-bit quantity, whereas previously the
low half was printed first. But that is good enough for debug output,
especially as prefixed instructions will be rare in kernel code in
practice.
Old:
c000000000111170 60420000 ori r2,r2,0
c000000000111174 04100001 e580fb00 .long 0xe580fb0004100001
New:
c00000000010f90c 60420000 ori r2,r2,0
c00000000010f910 e580fb0004100001 .long 0xe580fb0004100001
Reported-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reported-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Link: https://lore.kernel.org/r/20220531065936.3674348-1-mpe@ellerman.id.au
The H_ENTER_NESTED hypercall receives as second parameter the address
of a region of memory containing the values for the nested guest
privileged registers. We currently use the pt_regs structure contained
within kvm_vcpu_arch for that end.
Most hypercalls that receive a memory address expect that region to
not cross a 4K page boundary. We would want H_ENTER_NESTED to follow
the same pattern so this patch ensures the pt_regs structure sits
within a page.
Note: the pt_regs structure is currently 384 bytes in size, so
aligning to 512 is sufficient to ensure it will not cross a 4K page
and avoids punching too big a hole in struct kvm_vcpu_arch.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Murilo Opsfelder Araújo <muriloo@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220624142712.790491-1-farosas@linux.ibm.com
Alter the data collection points for the debug timing code in the P9
path to be more in line with what the code does. The points where we
accumulate time are now the following:
vcpu_entry: From vcpu_run_hv entry until the start of the inner loop;
guest_entry: From the start of the inner loop until the guest entry in
asm;
in_guest: From the guest entry in asm until the return to KVM C code;
guest_exit: From the return into KVM C code until the corresponding
hypercall/page fault handling or re-entry into the guest;
hypercall: Time spent handling hcalls in the kernel (hcalls can go to
QEMU, not accounted here);
page_fault: Time spent handling page faults;
vcpu_exit: vcpu_run_hv exit (almost no code here currently).
Like before, these are exposed in debugfs in a file called
"timings". There are four values:
- number of occurrences of the accumulation point;
- total time the vcpu spent in the phase in ns;
- shortest time the vcpu spent in the phase in ns;
- longest time the vcpu spent in the phase in ns;
===
Before:
rm_entry: 53132 16793518 256 4060
rm_intr: 53132 2125914 22 340
rm_exit: 53132 24108344 374 2180
guest: 53132 40980507996 404 9997650
cede: 0 0 0 0
After:
vcpu_entry: 34637 7716108 178 4416
guest_entry: 52414 49365608 324 747542
in_guest: 52411 40828715840 258 9997480
guest_exit: 52410 19681717182 826 102496674
vcpu_exit: 34636 1744462 38 182
hypercall: 45712 22878288 38 1307962
page_fault: 992 111104034 568 168688
With just one instruction (hcall):
vcpu_entry: 1 942 942 942
guest_entry: 1 4044 4044 4044
in_guest: 1 1540 1540 1540
guest_exit: 1 3542 3542 3542
vcpu_exit: 1 80 80 80
hypercall: 0 0 0 0
page_fault: 0 0 0 0
===
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220525130554.2614394-6-farosas@linux.ibm.com
We are currently doing the timing for debug purposes of the P9 entry
path using the accumulators and terminology defined by the old entry
path for P8 machines.
Not only the "real-mode" and "napping" mentions are out of place for
the P9 Radix entry path but also we cannot change them because the
timing code is coupled to the structures defined in struct
kvm_vcpu_arch.
Add a new CONFIG_KVM_BOOK3S_HV_P9_TIMING to enable the timing code for
the P9 entry path. For now, just add the new CONFIG and duplicate the
structures. A subsequent patch will add the P9 changes.
Signed-off-by: Fabiano Rosas <farosas@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220525130554.2614394-4-farosas@linux.ibm.com
We now have memory organised in a way that allows
implementing KASAN.
Unlike book3s/64, book3e always has translation active so the only
thing needed to use KASAN is to setup an early zero shadow mapping
just after setting a stack pointer and before calling early_setup().
The memory layout is now as follows
+------------------------+ Kernel virtual map end (0xc000200000000000)
| |
| 16TB of KASAN map |
| |
+------------------------+ Kernel KASAN shadow map start
| |
| 16TB of IO map |
| |
+------------------------+ Kernel IO map start
| |
| 16TB of vmemmap |
| |
+------------------------+ Kernel vmemmap start
| |
| 16TB of vmap |
| |
+------------------------+ Kernel virt start (0xc000100000000000)
| |
| 64TB of linear mem |
| |
+------------------------+ Kernel linear (0xc.....)
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/0bef8beda27baf71e3b9e8b13e620fba6e19499b.1656427701.git.christophe.leroy@csgroup.eu
Reduce the size of IO map in order to leave the last
quarter of virtual MAP for KASAN shadow mapping.
This gives the following layout.
+------------------------+ Kernel virtual map end (0xc000200000000000)
| |
| 16TB (unused) |
| |
+------------------------+ Kernel IO map end
| |
| 16TB of IO map |
| |
+------------------------+ Kernel IO map start
| |
| 16TB of vmemmap |
| |
+------------------------+ Kernel vmemmap start
| |
| 16TB of vmap |
| |
+------------------------+ Kernel virt start (0xc000100000000000)
| |
| 64TB of linear mem |
| |
+------------------------+ Kernel linear (0xc.....)
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/54ef01673bf14228106afd629f795c83acb9a00c.1656427701.git.christophe.leroy@csgroup.eu
Today nohash/64 have linear memory based at 0xc000000000000000 and
virtual memory based at 0x8000000000000000.
In order to implement KASAN, we need to regroup both areas.
Move virtual memmory at 0xc000100000000000.
This complicates a bit TLB miss handlers. Until now, memory region
was easily identified with the 4 higher bits of address:
- 0 ==> User
- c ==> Linear Memory
- 8 ==> Virtual Memory
Now we need to rely on the 20 higher bits, with:
- 0xxxx ==> User
- c0000 ==> Linear Memory
- c0001 ==> Virtual Memory
Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/4b225168031449fc34fc7132f3923cc8dc54af60.1656427701.git.christophe.leroy@csgroup.eu
All architecture-independent users of virt_to_bus() and bus_to_virt()
have been fixed to use the dma mapping interfaces or have been
removed now. This means the definitions on most architectures, and the
CONFIG_VIRT_TO_BUS symbol are now obsolete and can be removed.
The only exceptions to this are a few network and scsi drivers for m68k
Amiga and VME machines and ppc32 Macintosh. These drivers work correctly
with the old interfaces and are probably not worth changing.
On alpha and parisc, virt_to_bus() were still used in asm/floppy.h.
alpha can use isa_virt_to_bus() like x86 does, and parisc can just
open-code the virt_to_phys() here, as this is architecture specific
code.
I tried updating the bus-virt-phys-mapping.rst documentation, which
started as an email from Linus to explain some details of the Linux-2.0
driver interfaces. The bits about virt_to_bus() were declared obsolete
backin 2000, and the rest is not all that relevant any more, so in the
end I just decided to remove the file completely.
Reviewed-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc)
Acked-by: Helge Deller <deller@gmx.de> # parisc
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
so it will be consistent with code mm directory and with
Documentation/admin-guide/mm and won't be confused with virtual machines.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Tested-by: Ira Weiny <ira.weiny@intel.com>
Acked-by: Jonathan Corbet <corbet@lwn.net>
Acked-by: Wu XiangCheng <bobwxc@email.cn>
Pull powerpc fixes from Michael Ellerman:
- On 32-bit fix overread/overwrite of thread_struct via ptrace
PEEK/POKE.
- Fix softirqs not switching to the softirq stack since we moved
irq_exit().
- Force thread size increase when KASAN is enabled to avoid stack
overflows.
- On Book3s 64 mark more code as not to be instrumented by KASAN to
avoid crashes.
- Exempt __get_wchan() from KASAN checking, as it's inherently racy.
- Fix a recently introduced crash in the papr_scm driver in some
configurations.
- Remove include of <generated/compile.h> which is forbidden.
Thanks to Ariel Miculas, Chen Jingwen, Christophe Leroy, Erhard Furtner,
He Ying, Kees Cook, Masahiro Yamada, Nageswara R Sastry, Paul Mackerras,
Sachin Sant, Vaibhav Jain, and Wanming Hu.
* tag 'powerpc-5.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/32: Fix overread/overwrite of thread_struct via ptrace
powerpc/book3e: get rid of #include <generated/compile.h>
powerpc/kasan: Force thread size increase with KASAN
powerpc/papr_scm: don't requests stats with '0' sized stats buffer
powerpc: Don't select HAVE_IRQ_EXIT_ON_IRQ_STACK
powerpc/kasan: Silence KASAN warnings in __get_wchan()
powerpc/kasan: Mark more real-mode code as not to be instrumented
it's inline and unlikely() inside of it (including the implicit one
in WARN_ON_ONCE()) suffice to convince the compiler that getting
false from check_copy_size() is unlikely.
Spotted-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Pull tty and serial driver updates from Greg KH:
"Here is the big set of tty and serial driver updates for 5.19-rc1.
Lots of tiny cleanups in here, the major stuff is:
- termbit cleanups and unification by Ilpo. A much needed change that
goes a long way to making things simpler for all of the different
arches
- tty documentation cleanups and movements to their own place in the
documentation tree
- old tty driver cleanups and fixes from Jiri to bring some existing
drivers into the modern world
- RS485 cleanups and unifications to make it easier for individual
drivers to support this mode instead of having to duplicate logic
in each driver
- Lots of 8250 driver updates and additions
- new device id additions
- n_gsm continued fixes and cleanups
- other minor serial driver updates and cleanups
All of these have been in linux-next for weeks with no reported issues"
* tag 'tty-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/tty: (166 commits)
tty: Rework receive flow control char logic
pcmcia: synclink_cs: Don't allow CS5-6
serial: stm32-usart: Correct CSIZE, bits, and parity
serial: st-asc: Sanitize CSIZE and correct PARENB for CS7
serial: sifive: Sanitize CSIZE and c_iflag
serial: sh-sci: Don't allow CS5-6
serial: txx9: Don't allow CS5-6
serial: rda-uart: Don't allow CS5-6
serial: digicolor-usart: Don't allow CS5-6
serial: uartlite: Fix BRKINT clearing
serial: cpm_uart: Fix build error without CONFIG_SERIAL_CPM_CONSOLE
serial: core: Do stop_rx in suspend path for console if console_suspend is disabled
tty: serial: qcom-geni-serial: Remove uart frequency table. Instead, find suitable frequency with call to clk_round_rate.
dt-bindings: serial: renesas,em-uart: Add RZ/V2M clock to access the registers
serial: 8250_fintek: Check SER_RS485_RTS_* only with RS485
Revert "serial: 8250_mtk: Make sure to select the right FEATURE_SEL"
serial: msm_serial: disable interrupts in __msm_console_write()
serial: meson: acquire port->lock in startup()
serial: 8250_dw: Use dev_err_probe()
serial: 8250_dw: Use devm_add_action_or_reset()
...
Pull asm-generic fixes from Arnd Bergmann:
"The header cleanup series from Masahiro Yamada ended up causing some
regressions in the ABI because of an ambigous uid_t type.
This was only caught after the original patches got merged, but at
least the fixes are trivial and hopefully complete"
* tag 'asm-generic-fixes-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/asm-generic:
binder: fix sender_euid type in uapi header
sparc: fix mis-use of __kernel_{uid,gid}_t in uapi/asm/stat.h
powerpc: use __kernel_{uid,gid}32_t in uapi/asm/stat.h
mips: use __kernel_{uid,gid}32_t in uapi/asm/stat.h
Pull livepatching cleanup from Petr Mladek:
- Remove duplicated livepatch code [Christophe]
* tag 'livepatching-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching:
livepatch: Remove klp_arch_set_pc() and asm/livepatch.h
Commit c01013a2f8 ("powerpc: add asm/stat.h to UAPI compile-test
coverage") converted as follows:
uid_t --> __kernel_uid_t
gid_t --> __kernel_gid_t
The bit width of __kernel_{uid,gid}_t is 16 or 32-bits depending on
architectures.
PPC uses 32-bits for them as in include/uapi/asm-generic/posix_types.h,
so the previous conversion is probably fine, but let's stick to the
arch-independent conversion just in case.
The safe replacements across all architectures are:
uid_t --> __kernel_uid32_t
gid_t --> __kernel_gid32_t
as defined in include/linux/types.h.
A similar issue was reported for the android binder. [1]
[1]: https://lore.kernel.org/all/20220601010017.2639048-1-cmllamas@google.com/
Fixes: c01013a2f8 ("powerpc: add asm/stat.h to UAPI compile-test coverage")
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
KASAN causes increased stack usage, which can lead to stack overflows.
The logic in Kconfig to suggest a larger default doesn't work if a user
has CONFIG_EXPERT enabled and has an existing .config with a smaller
value.
Follow the lead of x86 and arm64, and force the thread size to be
increased when KASAN is enabled.
That also has the effect of enlarging the stack for 64-bit KASAN builds,
which is also desirable.
Fixes: edbadaf067 ("powerpc/kasan: Fix stack overflow by increasing THREAD_SHIFT")
Reported-by: Erhard Furtner <erhard_f@mailbox.org>
Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu>
[mpe: Use MIN_THREAD_SHIFT as suggested by Christophe]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20220601143114.133524-1-mpe@ellerman.id.au