KVM x86 misc changes for 6.11
- Add a global struct to consolidate tracking of host values, e.g. EFER, and
move "shadow_phys_bits" into the structure as "maxphyaddr".
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC
bus frequency, because TDX.
- Print the name of the APICv/AVIC inhibits in the relevant tracepoint.
- Clean up KVM's handling of vendor specific emulation to consistently act on
"compatible with Intel/AMD", versus checking for a specific vendor.
- Misc cleanups
SEV-ES and thus SNP guest mandates LBR Virtualization to be _always_ ON.
Although commit b7e4be0a22 ("KVM: SEV-ES: Delegate LBR virtualization
to the processor") did the correct change for SEV-ES guests, it missed
the SNP. Fix it.
Reported-by: Srikanth Aithal <sraithal@amd.com>
Fixes: b7e4be0a22 ("KVM: SEV-ES: Delegate LBR virtualization to the processor")
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Message-ID: <20240605114810.1304-1-ravi.bangoria@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
save_area of per-CPU svm_data are dominantly accessed from their
own local CPUs, so allocate them node-local for performance reason
so rename __snp_safe_alloc_page as snp_safe_alloc_page_node which
accepts numa node id as input parameter, svm_cpu_init call it with
node id switched from cpu id
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240520120858.13117-4-lirongqing@baidu.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Pull base x86 KVM support for running SEV-SNP guests from Michael Roth:
* add some basic infrastructure and introduces a new KVM_X86_SNP_VM
vm_type to handle differences versus the existing KVM_X86_SEV_VM and
KVM_X86_SEV_ES_VM types.
* implement the KVM API to handle the creation of a cryptographic
launch context, encrypt/measure the initial image into guest memory,
and finalize it before launching it.
* implement handling for various guest-generated events such as page
state changes, onlining of additional vCPUs, etc.
* implement the gmem/mmu hooks needed to prepare gmem-allocated pages
before mapping them into guest private memory ranges as well as
cleaning them up prior to returning them to the host for use as
normal memory. Because those cleanup hooks supplant certain
activities like issuing WBINVDs during KVM MMU invalidations, avoid
duplicating that work to avoid unecessary overhead.
This merge leaves out support support for attestation guest requests
and for loading the signing keys to be used for attestation requests.
As documented in APM[1], LBR Virtualization must be enabled for SEV-ES
guests. Although KVM currently enforces LBRV for SEV-ES guests, there
are multiple issues with it:
o MSR_IA32_DEBUGCTLMSR is still intercepted. Since MSR_IA32_DEBUGCTLMSR
interception is used to dynamically toggle LBRV for performance reasons,
this can be fatal for SEV-ES guests. For ex SEV-ES guest on Zen3:
[guest ~]# wrmsr 0x1d9 0x4
KVM: entry failed, hardware error 0xffffffff
EAX=00000004 EBX=00000000 ECX=000001d9 EDX=00000000
Fix this by never intercepting MSR_IA32_DEBUGCTLMSR for SEV-ES guests.
No additional save/restore logic is required since MSR_IA32_DEBUGCTLMSR
is of swap type A.
o KVM will disable LBRV if userspace sets MSR_IA32_DEBUGCTLMSR before the
VMSA is encrypted. Fix this by moving LBRV enablement code post VMSA
encryption.
[1]: AMD64 Architecture Programmer's Manual Pub. 40332, Rev. 4.07 - June
2023, Vol 2, 15.35.2 Enabling SEV-ES.
https://bugzilla.kernel.org/attachment.cgi?id=304653
Fixes: 376c6d2850 ("KVM: SVM: Provide support for SEV-ES vCPU creation/loading")
Co-developed-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Message-ID: <20240531044644.768-4-ravi.bangoria@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All SNP APs are initially started using the APIC INIT/SIPI sequence in
the guest. This sequence moves the AP MP state from
KVM_MP_STATE_UNINITIALIZED to KVM_MP_STATE_RUNNABLE, so there is no need
to attempt the UNBLOCK.
As it is, the UNBLOCK support in SVM is only enabled when AVIC is
enabled. When AVIC is disabled, AP creation is still successful.
Remove the KVM_REQ_UNBLOCK request from the AP creation code and revert
the changes to the vcpu_unblocking() kvm_x86_ops path.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The hook only handles cleanup work specific to SNP, e.g. RMP table
entries and flushing caches for encrypted guest memory. When run on a
non-SNP-enabled host (currently only possible using
KVM_X86_SW_PROTECTED_VM, e.g. via KVM selftests), the callback is a noop
and will WARN due to the RMP table not being present. It's actually
expected in this case that the RMP table wouldn't be present and that
the hook should be a noop, so drop the WARN_ONCE().
Reported-by: Sean Christopherson <seanjc@google.com>
Closes: https://lore.kernel.org/kvm/ZkU3_y0UoPk5yAeK@google.com/
Fixes: 8eb01900b0 ("KVM: SEV: Implement gmem hook for invalidating private pages")
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently there's a consistent pattern of always calling
host_rmp_make_shared() immediately after snp_page_reclaim(), so go ahead
and handle it automatically as part of snp_page_reclaim(). Also rename
it to kvm_rmp_make_shared() to more easily distinguish it as a
KVM-specific variant of the more generic rmp_make_shared() helper.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KVM's snapshot of the host's XCR0 when stuffing SEV-ES host state
instead of reading XCR0 from hardware. XCR0 is only written during
boot, i.e. won't change while KVM is running (and KVM at large is hosed
if that doesn't hold true).
Link: https://lore.kernel.org/r/20240423221521.2923759-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add "struct kvm_host_values kvm_host" to hold the various host values
that KVM snapshots during initialization. Bundling the host values into
a single struct simplifies adding new MSRs and other features with host
state/values that KVM cares about, and provides a one-stop shop. E.g.
adding a new value requires one line, whereas tracking each value
individual often requires three: declaration, definition, and export.
No functional change intended.
Link: https://lore.kernel.org/r/20240423221521.2923759-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
With SNP/guest_memfd, private/encrypted memory should not be mappable,
and MMU notifications for HVA-mapped memory will only be relevant to
unencrypted guest memory. Therefore, the rationale behind issuing a
wbinvd_on_all_cpus() in sev_guest_memory_reclaimed() should not apply
for SNP guests and can be ignored.
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
[mdr: Add some clarifications in commit]
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501085210.2213060-17-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In the case of SEV-SNP, whether or not a 2MB page can be mapped via a
2MB mapping in the guest's nested page table depends on whether or not
any subpages within the range have already been initialized as private
in the RMP table. The existing mixed-attribute tracking in KVM is
insufficient here, for instance:
- gmem allocates 2MB page
- guest issues PVALIDATE on 2MB page
- guest later converts a subpage to shared
- SNP host code issues PSMASH to split 2MB RMP mapping to 4K
- KVM MMU splits NPT mapping to 4K
- guest later converts that shared page back to private
At this point there are no mixed attributes, and KVM would normally
allow for 2MB NPT mappings again, but this is actually not allowed
because the RMP table mappings are 4K and cannot be promoted on the
hypervisor side, so the NPT mappings must still be limited to 4K to
match this.
Implement a kvm_x86_ops.private_max_mapping_level() hook for SEV that
checks for this condition and adjusts the mapping level accordingly.
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501085210.2213060-16-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement a platform hook to do the work of restoring the direct map
entries of gmem-managed pages and transitioning the corresponding RMP
table entries back to the default shared/hypervisor-owned state.
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501085210.2213060-15-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for the SEV-SNP AP Creation NAE event. This allows SEV-SNP
guests to alter the register state of the APs on their own. This allows
the guest a way of simulating INIT-SIPI.
A new event, KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, is created and used
so as to avoid updating the VMSA pointer while the vCPU is running.
For CREATE
The guest supplies the GPA of the VMSA to be used for the vCPU with
the specified APIC ID. The GPA is saved in the svm struct of the
target vCPU, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is added
to the vCPU and then the vCPU is kicked.
For CREATE_ON_INIT:
The guest supplies the GPA of the VMSA to be used for the vCPU with
the specified APIC ID the next time an INIT is performed. The GPA is
saved in the svm struct of the target vCPU.
For DESTROY:
The guest indicates it wishes to stop the vCPU. The GPA is cleared
from the svm struct, the KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event is
added to vCPU and then the vCPU is kicked.
The KVM_REQ_UPDATE_PROTECTED_GUEST_STATE event handler will be invoked
as a result of the event or as a result of an INIT. If a new VMSA is to
be installed, the VMSA guest page is set as the VMSA in the vCPU VMCB
and the vCPU state is set to KVM_MP_STATE_RUNNABLE. If a new VMSA is not
to be installed, the VMSA is cleared in the vCPU VMCB and the vCPU state
is set to KVM_MP_STATE_HALTED to prevent it from being run.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-13-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When SEV-SNP is enabled in the guest, the hardware places restrictions
on all memory accesses based on the contents of the RMP table. When
hardware encounters RMP check failure caused by the guest memory access
it raises the #NPF. The error code contains additional information on
the access type. See the APM volume 2 for additional information.
When using gmem, RMP faults resulting from mismatches between the state
in the RMP table vs. what the guest expects via its page table result
in KVM_EXIT_MEMORY_FAULTs being forwarded to userspace to handle. This
means the only expected case that needs to be handled in the kernel is
when the page size of the entry in the RMP table is larger than the
mapping in the nested page table, in which case a PSMASH instruction
needs to be issued to split the large RMP entry into individual 4K
entries so that subsequent accesses can succeed.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-12-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP
table to be private or shared using the Page State Change NAE event
as defined in the GHCB specification version 2.
Forward these requests to userspace as KVM_EXIT_VMGEXITs, similar to how
it is done for requests that don't use a GHCB page.
As with the MSR-based page-state changes, use the existing
KVM_HC_MAP_GPA_RANGE hypercall format to deliver these requests to
userspace via KVM_EXIT_HYPERCALL.
Signed-off-by: Michael Roth <michael.roth@amd.com>
Co-developed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-11-michael.roth@amd.com>
Co-developed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV-SNP VMs can ask the hypervisor to change the page state in the RMP
table to be private or shared using the Page State Change MSR protocol
as defined in the GHCB specification.
When using gmem, private/shared memory is allocated through separate
pools, and KVM relies on userspace issuing a KVM_SET_MEMORY_ATTRIBUTES
KVM ioctl to tell the KVM MMU whether or not a particular GFN should be
backed by private memory or not.
Forward these page state change requests to userspace so that it can
issue the expected KVM ioctls. The KVM MMU will handle updating the RMP
entries when it is ready to map a private page into a guest.
Use the existing KVM_HC_MAP_GPA_RANGE hypercall format to deliver these
requests to userspace via KVM_EXIT_HYPERCALL.
Signed-off-by: Michael Roth <michael.roth@amd.com>
Co-developed-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-10-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV-SNP guests are required to perform a GHCB GPA registration. Before
using a GHCB GPA for a vCPU the first time, a guest must register the
vCPU GHCB GPA. If hypervisor can work with the guest requested GPA then
it must respond back with the same GPA otherwise return -1.
On VMEXIT, verify that the GHCB GPA matches with the registered value.
If a mismatch is detected, then abort the guest.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501085210.2213060-9-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a KVM_SEV_SNP_LAUNCH_FINISH command to finalize the cryptographic
launch digest which stores the measurement of the guest at launch time.
Also extend the existing SNP firmware data structures to support
disabling the use of Versioned Chip Endorsement Keys (VCEK) by guests as
part of this command.
While finalizing the launch flow, the code also issues the LAUNCH_UPDATE
SNP firmware commands to encrypt/measure the initial VMSA pages for each
configured vCPU, which requires setting the RMP entries for those pages
to private, so also add handling to clean up the RMP entries for these
pages whening freeing vCPUs during shutdown.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-8-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A key aspect of a launching an SNP guest is initializing it with a
known/measured payload which is then encrypted into guest memory as
pre-validated private pages and then measured into the cryptographic
launch context created with KVM_SEV_SNP_LAUNCH_START so that the guest
can attest itself after booting.
Since all private pages are provided by guest_memfd, make use of the
kvm_gmem_populate() interface to handle this. The general flow is that
guest_memfd will handle allocating the pages associated with the GPA
ranges being initialized by each particular call of
KVM_SEV_SNP_LAUNCH_UPDATE, copying data from userspace into those pages,
and then the post_populate callback will do the work of setting the
RMP entries for these pages to private and issuing the SNP firmware
calls to encrypt/measure them.
For more information see the SEV-SNP specification.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-7-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM_SEV_SNP_LAUNCH_START begins the launch process for an SEV-SNP guest.
The command initializes a cryptographic digest context used to construct
the measurement of the guest. Other commands can then at that point be
used to load/encrypt data into the guest's initial launch image.
For more information see the SEV-SNP specification.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Message-ID: <20240501085210.2213060-6-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV-SNP builds upon existing SEV and SEV-ES functionality while adding
new hardware-based security protection. SEV-SNP adds strong memory
encryption and integrity protection to help prevent malicious
hypervisor-based attacks such as data replay, memory re-mapping, and
more, to create an isolated execution environment.
Define a new KVM_X86_SNP_VM type which makes use of these capabilities
and extend the KVM_SEV_INIT2 ioctl to support it. Also add a basic
helper to check whether SNP is enabled and set PFERR_PRIVATE_ACCESS for
private #NPFs so they are handled appropriately by KVM MMU.
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240501085210.2213060-5-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The GHCB protocol version may be different from one guest to the next.
Add a field to track it for each KVM instance and extend KVM_SEV_INIT2
to allow it to be configured by userspace.
Now that all SEV-ES support for GHCB protocol version 2 is in place, go
ahead and default to it when creating SEV-ES guests through the new
KVM_SEV_INIT2 interface. Keep the older KVM_SEV_ES_INIT interface
restricted to GHCB protocol version 1.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-5-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
GHCB version 2 adds support for a GHCB-based termination request that
a guest can issue when it reaches an error state and wishes to inform
the hypervisor that it should be terminated. Implement support for that
similarly to GHCB MSR-based termination requests that are already
available to SEV-ES guests via earlier versions of the GHCB protocol.
See 'Termination Request' in the 'Invoking VMGEXIT' section of the GHCB
specification for more details.
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-4-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The DebugSwap feature of SEV-ES provides a way for confidential guests
to use data breakpoints. Its status is record in VMSA, and therefore
attestation signatures depend on whether it is enabled or not. In order
to avoid invalidating the signatures depending on the host machine, it
was disabled by default (see commit 5abf6dceb0, "SEV: disable SEV-ES
DebugSwap by default", 2024-03-09).
However, we now have a new API to create SEV VMs that allows enabling
DebugSwap based on what the user tells KVM to do, and we also changed the
legacy KVM_SEV_ES_INIT API to never enable DebugSwap. It is therefore
possible to re-enable the feature without breaking compatibility with
kernels that pre-date the introduction of DebugSwap, so go ahead.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-14-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The idea that no parameter would ever be necessary when enabling SEV or
SEV-ES for a VM was decidedly optimistic. In fact, in some sense it's
already a parameter whether SEV or SEV-ES is desired. Another possible
source of variability is the desired set of VMSA features, as that affects
the measurement of the VM's initial state and cannot be changed
arbitrarily by the hypervisor.
Create a new sub-operation for KVM_MEMORY_ENCRYPT_OP that can take a struct,
and put the new op to work by including the VMSA features as a field of the
struct. The existing KVM_SEV_INIT and KVM_SEV_ES_INIT use the full set of
supported VMSA features for backwards compatibility.
The struct also includes the usual bells and whistles for future
extensibility: a flags field that must be zero for now, and some padding
at the end.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-13-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SEV-ES allows passing custom contents for x87, SSE and AVX state into the VMSA.
Allow userspace to do that with the usual KVM_SET_XSAVE API and only mark
FPU contents as confidential after it has been copied and encrypted into
the VMSA.
Since the XSAVE state for AVX is the first, it does not need the
compacted-state handling of get_xsave_addr(). However, there are other
parts of XSAVE state in the VMSA that currently are not handled, and
the validation logic of get_xsave_addr() is pointless to duplicate
in KVM, so move get_xsave_addr() to public FPU API; it is really just
a facility to operate on XSAVE state and does not expose any internal
details of arch/x86/kernel/fpu.
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-12-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Right now, the set of features that are stored in the VMSA upon
initialization is fixed and depends on the module parameters for
kvm-amd.ko. However, the hypervisor cannot really change it at will
because the feature word has to match between the hypervisor and whatever
computes a measurement of the VMSA for attestation purposes.
Add a field to kvm_sev_info that holds the set of features to be stored
in the VMSA; and query it instead of referring to the module parameters.
Because KVM_SEV_INIT and KVM_SEV_ES_INIT accept no parameters, this
does not yet introduce any functional change, but it paves the way for
an API that allows customization of the features per-VM.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20240209183743.22030-6-pbonzini@redhat.com>
Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Compute the set of features to be stored in the VMSA when KVM is
initialized; move it from there into kvm_sev_info when SEV is initialized,
and then into the initial VMSA.
The new variable can then be used to return the set of supported features
to userspace, via the KVM_GET_DEVICE_ATTR ioctl.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <20240404121327.3107131-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop compiling sev.c when CONFIG_KVM_AMD_SEV=n, as the number of #ifdefs
in sev.c is getting ridiculous, and having #ifdefs inside of SEV helpers
is quite confusing.
To minimize #ifdefs in code flows, #ifdef away only the kvm_x86_ops hooks
and the #VMGEXIT handler. Stubs are also restricted to functions that
check sev_enabled and to the destruction functions sev_free_cpu() and
sev_vm_destroy(), where the style of their callers is to leave checks
to the callers. Most call sites instead rely on dead code elimination
to take care of functions that are guarded with sev_guest() or
sev_es_guest().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Leave SEV and SEV_ES '0' in kvm_cpu_caps by default, and instead set them
in sev_set_cpu_caps() if SEV and SEV-ES support are fully enabled. Aside
from the fact that sev_set_cpu_caps() is wildly misleading when it *clears*
capabilities, this will allow compiling out sev.c without falsely
advertising SEV/SEV-ES support in KVM_GET_SUPPORTED_CPUID.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We want to fix:
0e11073247 ("x86/retpoline: Do the necessary fixup to the Zen3/4 srso return thunk for !SRSO")
So merge in Linus's latest into x86/urgent to have it available.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The host SNP worthiness can determined later, after alternatives have
been patched, in snp_rmptable_init() depending on cmdline options like
iommu=pt which is incompatible with SNP, for example.
Which means that one cannot use X86_FEATURE_SEV_SNP and will need to
have a special flag for that control.
Use that newly added CC_ATTR_HOST_SEV_SNP in the appropriate places.
Move kdump_sev_callback() to its rightful place, while at it.
Fixes: 216d106c7f ("x86/sev: Add SEV-SNP host initialization support")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Srikanth Aithal <sraithal@amd.com>
Link: https://lore.kernel.org/r/20240327154317.29909-6-bp@alien8.de
KVM SVM changes for 6.9:
- Add support for systems that are configured with SEV and SEV-ES+ enabled,
but have all ASIDs assigned to SEV-ES+ guests, which effectively makes SEV
unusuable. Cleanup ASID handling to make supporting this scenario less
brittle/ugly.
- Return -EINVAL instead of -EBUSY if userspace attempts to invoke
KVM_SEV{,ES}_INIT on an SEV+ guest. The operation is simply invalid, and
not related to resource contention in any way.
Pull x86 SEV updates from Borislav Petkov:
- Add the x86 part of the SEV-SNP host support.
This will allow the kernel to be used as a KVM hypervisor capable of
running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP
is the ultimate goal of the AMD confidential computing side,
providing the most comprehensive confidential computing environment
up to date.
This is the x86 part and there is a KVM part which did not get ready
in time for the merge window so latter will be forthcoming in the
next cycle.
- Rework the early code's position-dependent SEV variable references in
order to allow building the kernel with clang and -fPIE/-fPIC and
-mcmodel=kernel
- The usual set of fixes, cleanups and improvements all over the place
* tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/sev: Disable KMSAN for memory encryption TUs
x86/sev: Dump SEV_STATUS
crypto: ccp - Have it depend on AMD_IOMMU
iommu/amd: Fix failure return from snp_lookup_rmpentry()
x86/sev: Fix position dependent variable references in startup code
crypto: ccp: Make snp_range_list static
x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
Documentation: virt: Fix up pre-formatted text block for SEV ioctls
crypto: ccp: Add the SNP_SET_CONFIG command
crypto: ccp: Add the SNP_COMMIT command
crypto: ccp: Add the SNP_PLATFORM_STATUS command
x86/cpufeatures: Enable/unmask SEV-SNP CPU feature
KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe
crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump
iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown
crypto: ccp: Handle legacy SEV commands when SNP is enabled
crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled
crypto: ccp: Handle the legacy TMR allocation when SNP is enabled
x86/sev: Introduce an SNP leaked pages list
crypto: ccp: Provide an API to issue SEV and SNP commands
...
The DebugSwap feature of SEV-ES provides a way for confidential guests to use
data breakpoints. However, because the status of the DebugSwap feature is
recorded in the VMSA, enabling it by default invalidates the attestation
signatures. In 6.10 we will introduce a new API to create SEV VMs that
will allow enabling DebugSwap based on what the user tells KVM to do.
Contextually, we will change the legacy KVM_SEV_ES_INIT API to never
enable DebugSwap.
For compatibility with kernels that pre-date the introduction of DebugSwap,
as well as with those where KVM_SEV_ES_INIT will never enable it, do not enable
the feature by default. If anybody wants to use it, for now they can enable
the sev_es_debug_swap_enabled module parameter, but this will result in a
warning.
Fixes: d1f85fbe83 ("KVM: SEV: Enable data breakpoints in SEV-ES")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Do the cache flush of converted pages in svm_register_enc_region() before
dropping kvm->lock to fix use-after-free issues where region and/or its
array of pages could be freed by a different task, e.g. if userspace has
__unregister_enc_region_locked() already queued up for the region.
Note, the "obvious" alternative of using local variables doesn't fully
resolve the bug, as region->pages is also dynamically allocated. I.e. the
region structure itself would be fine, but region->pages could be freed.
Flushing multiple pages under kvm->lock is unfortunate, but the entire
flow is a rare slow path, and the manual flush is only needed on CPUs that
lack coherency for encrypted memory.
Fixes: 19a23da539 ("Fix unsynchronized access to sev members through svm_register_enc_region")
Reported-by: Gabe Kirkpatrick <gkirkpatrick@google.com>
Cc: Josh Eads <josheads@google.com>
Cc: Peter Gonda <pgonda@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20240217013430.2079561-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>