There are a few functions in ftrace.c that have "goto out" or equivalent
on error in order to release locks that were taken. This can be error
prone or just simply make the code more complex.
Switch every location that ends with unlocking a mutex on error over to
using the guard(mutex)() infrastructure to let the compiler worry about
releasing locks. This makes the code easier to read and understand.
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: https://lore.kernel.org/20241223184941.718001540@goodmis.org
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Make sure the trace_kprobe's module notifer callback function is called
after jump_label's callback is called. Since the trace_kprobe's callback
eventually checks jump_label address during registering new kprobe on
the loading module, jump_label must be updated before this registration
happens.
Link: https://lore.kernel.org/all/173387585556.995044.3157941002975446119.stgit@devnote2/
Fixes: 6142431810 ("tracing/kprobes: Support module init function probing")
Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
prctl() is a complex syscall which multiplexes its functionality based
on a large set of PR_* options. Currently we count 64 such options. The
return value of unknown options is -EINVAL, and doesn't distinguish from
known options that were passed invalid args that also return -EINVAL.
To understand if programs are attempting to use prctl() options not yet
available on the running kernel, provide the task_prctl_unknown
tracepoint.
Note, this tracepoint is in an unlikely cold path, and would therefore
be suitable for continuous monitoring (e.g. via perf_event_open).
While the above is likely the simplest usecase, additionally this
tracepoint can help unlock some testing scenarios (where probing
sys_enter or sys_exit causes undesirable performance overheads):
a. unprivileged triggering of a test module: test modules may register a
probe to be called back on task_prctl_unknown, and pick a very large
unknown prctl() option upon which they perform a test function for an
unprivileged user;
b. unprivileged triggering of an eBPF program function: similar
as idea (a).
Example trace_pipe output:
test-380 [001] ..... 78.142904: task_prctl_unknown: option=1234 arg2=101 arg3=102 arg4=103 arg5=104
Signed-off-by: Marco Elver <elver@google.com>
Reviewed-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/r/20241108113455.2924361-1-elver@google.com
Signed-off-by: Kees Cook <kees@kernel.org>
Lockdep changes for v6.14:
- Use swap() macro in the ww_mutex test.
- Minor fixes and documentation for lockdep configs on internal data structure sizes.
- Some "-Wunused-function" warning fixes for Clang.
Rust locking changes for v6.14:
- Add Rust locking files into LOCKING PRIMITIVES maintainer entry.
- Add `Lock<(), ..>::from_raw()` function to support abstraction on low level locking.
- Expose `Guard::new()` for public usage and add type alias for spinlock and mutex guards.
- Add lockdep checking when creating a new lock `Guard`.
Pull misc fixes from Andrew Morton:
"25 hotfixes. 16 are cc:stable. 19 are MM and 6 are non-MM.
The usual bunch of singletons and doubletons - please see the relevant
changelogs for details"
* tag 'mm-hotfixes-stable-2024-12-21-12-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (25 commits)
mm: huge_memory: handle strsep not finding delimiter
alloc_tag: fix set_codetag_empty() when !CONFIG_MEM_ALLOC_PROFILING_DEBUG
alloc_tag: fix module allocation tags populated area calculation
mm/codetag: clear tags before swap
mm/vmstat: fix a W=1 clang compiler warning
mm: convert partially_mapped set/clear operations to be atomic
nilfs2: fix buffer head leaks in calls to truncate_inode_pages()
vmalloc: fix accounting with i915
mm/page_alloc: don't call pfn_to_page() on possibly non-existent PFN in split_large_buddy()
fork: avoid inappropriate uprobe access to invalid mm
nilfs2: prevent use of deleted inode
zram: fix uninitialized ZRAM not releasing backing device
zram: refuse to use zero sized block device as backing device
mm: use clear_user_(high)page() for arch with special user folio handling
mm: introduce cpu_icache_is_aliasing() across all architectures
mm: add RCU annotation to pte_offset_map(_lock)
mm: correctly reference merged VMA
mm: use aligned address in copy_user_gigantic_page()
mm: use aligned address in clear_gigantic_page()
mm: shmem: fix ShmemHugePages at swapout
...
Pull BPF fixes from Daniel Borkmann:
- Fix inlining of bpf_get_smp_processor_id helper for !CONFIG_SMP
systems (Andrea Righi)
- Fix BPF USDT selftests helper code to use asm constraint "m" for
LoongArch (Tiezhu Yang)
- Fix BPF selftest compilation error in get_uprobe_offset when
PROCMAP_QUERY is not defined (Jerome Marchand)
- Fix BPF bpf_skb_change_tail helper when used in context of BPF
sockmap to handle negative skb header offsets (Cong Wang)
- Several fixes to BPF sockmap code, among others, in the area of
socket buffer accounting (Levi Zim, Zijian Zhang, Cong Wang)
* tag 'bpf-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf:
selftests/bpf: Test bpf_skb_change_tail() in TC ingress
selftests/bpf: Introduce socket_helpers.h for TC tests
selftests/bpf: Add a BPF selftest for bpf_skb_change_tail()
bpf: Check negative offsets in __bpf_skb_min_len()
tcp_bpf: Fix copied value in tcp_bpf_sendmsg
skmsg: Return copied bytes in sk_msg_memcopy_from_iter
tcp_bpf: Add sk_rmem_alloc related logic for tcp_bpf ingress redirection
tcp_bpf: Charge receive socket buffer in bpf_tcp_ingress()
selftests/bpf: Fix compilation error in get_uprobe_offset()
selftests/bpf: Use asm constraint "m" for LoongArch
bpf: Fix bpf_get_smp_processor_id() on !CONFIG_SMP
Tell tar to ignore silly-rename files (".__afs*" and ".nfs*") when building
the header archive. These occur when a file that is open is unlinked
locally, but hasn't yet been closed. Such files are visible to the user
via the getdents() syscall and so programs may want to do things with them.
During the kernel build, such files may be made during the processing of
header files and the cleanup may get deferred by fput() which may result in
tar seeing these files when it reads the directory, but they may have
disappeared by the time it tries to open them, causing tar to fail with an
error. Further, we don't want to include them in the tarball if they still
exist.
With CONFIG_HEADERS_INSTALL=y, something like the following may be seen:
find: './kernel/.tmp_cpio_dir/include/dt-bindings/reset/.__afs2080': No such file or directory
tar: ./include/linux/greybus/.__afs3C95: File removed before we read it
The find warning doesn't seem to cause a problem.
Fix this by telling tar when called from in gen_kheaders.sh to exclude such
files. This only affects afs and nfs; cifs uses the Windows Hidden
attribute to prevent the file from being seen.
Signed-off-by: David Howells <dhowells@redhat.com>
Link: https://lore.kernel.org/r/20241213135013.2964079-2-dhowells@redhat.com
cc: Masahiro Yamada <masahiroy@kernel.org>
cc: Marc Dionne <marc.dionne@auristor.com>
cc: linux-afs@lists.infradead.org
cc: linux-nfs@vger.kernel.org
cc: linux-kernel@vger.kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Pull ring-buffer fixes from Steven Rostedt:
- Fix possible overflow of mmapped ring buffer with bad offset
If the mmap() to the ring buffer passes in a start address that is
passed the end of the mmapped file, it is not caught and a
slab-out-of-bounds is triggered.
Add a check to make sure the start address is within the bounds
- Do not use TP_printk() to boot mapped ring buffers
As a boot mapped ring buffer's data may have pointers that map to the
previous boot's memory map, it is unsafe to allow the TP_printk() to
be used to read the boot mapped buffer's events. If a TP_printk()
points to a static string from within the kernel it will not match
the current kernel mapping if KASLR is active, and it can fault.
Have it simply print out the raw fields.
* tag 'trace-ringbuffer-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
trace/ring-buffer: Do not use TP_printk() formatting for boot mapped buffers
ring-buffer: Fix overflow in __rb_map_vma
A common pattern seen when wake_qs are used to defer a wakeup
until after a lock is released is something like:
preempt_disable();
raw_spin_unlock(lock);
wake_up_q(wake_q);
preempt_enable();
So create some raw_spin_unlock*_wake() helper functions to clean
this up.
Applies on top of the fix I submitted here:
https://lore.kernel.org/lkml/20241212222138.2400498-1-jstultz@google.com/
NOTE: I recognise the unlock()/unlock_irq()/unlock_irqrestore()
variants creates its own duplication, which we could use a macro
to generate the similar functions, but I often dislike how those
generation macros making finding the actual implementation
harder, so I left the three functions as is. If folks would
prefer otherwise, let me know and I'll switch it.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241217040803.243420-1-jstultz@google.com
Currently, there does not exist a straightforward way to extract the
names of the sched domains and match them to the per-cpu domain entry in
/proc/schedstat other than looking at the debugfs files which are only
visible after enabling "verbose" debug after commit 34320745df
("sched/debug: Put sched/domains files under the verbose flag")
Since tools like `perf sched stats`[1] require displaying per-domain
information in user friendly manner, display the names of sched domain,
alongside their level in /proc/schedstat.
Domain names also makes the /proc/schedstat data unambiguous when some
of the cpus are offline. For example, on a 128 cpus AMD Zen3 machine
where CPU0 and CPU64 are SMT siblings and CPU64 is offline:
Before:
cpu0 ...
domain0 ...
domain1 ...
cpu1 ...
domain0 ...
domain1 ...
domain2 ...
After:
cpu0 ...
domain0 MC ...
domain1 PKG ...
cpu1 ...
domain0 SMT ...
domain1 MC ...
domain2 PKG ...
[1] https://lore.kernel.org/lkml/20241122084452.1064968-1-swapnil.sapkal@amd.com/
Signed-off-by: K Prateek Nayak <kprateek.nayak@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Signed-off-by: Swapnil Sapkal <swapnil.sapkal@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: James Clark <james.clark@linaro.org>
Link: https://lore.kernel.org/r/20241220063224.17767-6-swapnil.sapkal@amd.com
In /proc/schedstat, lb_imbalance reports the sum of imbalances
discovered in sched domains with each call to sched_balance_rq(), which is
not very useful because lb_imbalance does not mention whether the imbalance
is due to load, utilization, nr_tasks or misfit_tasks. Remove this field
from /proc/schedstat.
Currently there is no field in /proc/schedstat to report different types
of imbalances. Introduce new fields in /proc/schedstat to report the
total imbalances in load, utilization, nr_tasks or misfit_tasks.
Added fields to /proc/schedstat:
- lb_imbalance_load: Total imbalance due to load.
- lb_imbalance_util: Total imbalance due to utilization.
- lb_imbalance_task: Total imbalance due to number of tasks.
- lb_imbalance_misfit: Total imbalance due to misfit tasks.
Signed-off-by: Swapnil Sapkal <swapnil.sapkal@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Shrikanth Hegde <sshegde@linux.ibm.com>
Link: https://lore.kernel.org/r/20241220063224.17767-4-swapnil.sapkal@amd.com
migrate_degrade_locality() would return {1, 0, -1} respectively to
indicate that migration would degrade-locality, would improve
locality, would be ambivalent to locality improvements.
This patch improves readability by changing the return value to mean:
* Any positive value degrades locality
* 0 migration doesn't affect locality
* Any negative value improves locality
[Swapnil: Fixed comments around code and wrote commit log]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Swapnil Sapkal <swapnil.sapkal@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241220063224.17767-3-swapnil.sapkal@amd.com
In /proc/schedstat, lb_hot_gained reports the number hot tasks pulled
during load balance. This value is incremented in can_migrate_task()
if the task is migratable and hot. After incrementing the value,
load balancer can still decide not to migrate this task leading to wrong
accounting. Fix this by incrementing stats when hot tasks are detached.
This issue only exists in detach_tasks() where we can decide to not
migrate hot task even if it is migratable. However, in detach_one_task(),
we migrate it unconditionally.
[Swapnil: Handled the case where nr_failed_migrations_hot was not accounted properly and wrote commit log]
Fixes: d31980846f ("sched: Move up affinity check to mitigate useless redoing overhead")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reported-by: "Gautham R. Shenoy" <gautham.shenoy@amd.com>
Not-yet-signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Swapnil Sapkal <swapnil.sapkal@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241220063224.17767-2-swapnil.sapkal@amd.com
When lockdep_assert_locked() is unused, it prevents kernel builds
with clang, `make W=1` and CONFIG_WERROR=y, CONFIG_LOCKDEP=y and
CONFIG_PROVE_LOCKING=n:
kernel/locking/lockdep.c:160:20: error: unused function 'lockdep_assert_locked' [-Werror,-Wunused-function]
Fix this by moving it under the respective ifdeffery.
See also commit 6863f5643d ("kbuild: allow Clang to find unused static
inline functions for W=1 build").
[Boqun: add more config information of the error]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20241202193445.769567-1-andriy.shevchenko@linux.intel.com
When chain_hlock_class_idx() is unused, it prevents kernel builds with
clang, `make W=1` and CONFIG_WERROR=y, CONFIG_LOCKDEP=y and
CONFIG_PROVE_LOCKING=n:
kernel/locking/lockdep.c:435:28: error: unused function 'chain_hlock_class_idx' [-Werror,-Wunused-function]
Fix this by marking it with __maybe_unused.
See also commit 6863f5643d ("kbuild: allow Clang to find unused static
inline functions for W=1 build").
[Boqun: add more config information of the error]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Link: https://lore.kernel.org/r/20241209170810.1485183-1-andriy.shevchenko@linux.intel.com
After commit
746ae46c11 ("drm/sched: Mark scheduler work queues with WQ_MEM_RECLAIM")
amdgpu started seeing the following warning:
[ ] workqueue: WQ_MEM_RECLAIM sdma0:drm_sched_run_job_work [gpu_sched] is flushing !WQ_MEM_RECLAIM events:amdgpu_device_delay_enable_gfx_off [amdgpu]
...
[ ] Workqueue: sdma0 drm_sched_run_job_work [gpu_sched]
...
[ ] Call Trace:
[ ] <TASK>
...
[ ] ? check_flush_dependency+0xf5/0x110
...
[ ] cancel_delayed_work_sync+0x6e/0x80
[ ] amdgpu_gfx_off_ctrl+0xab/0x140 [amdgpu]
[ ] amdgpu_ring_alloc+0x40/0x50 [amdgpu]
[ ] amdgpu_ib_schedule+0xf4/0x810 [amdgpu]
[ ] ? drm_sched_run_job_work+0x22c/0x430 [gpu_sched]
[ ] amdgpu_job_run+0xaa/0x1f0 [amdgpu]
[ ] drm_sched_run_job_work+0x257/0x430 [gpu_sched]
[ ] process_one_work+0x217/0x720
...
[ ] </TASK>
The intent of the verifcation done in check_flush_depedency is to ensure
forward progress during memory reclaim, by flagging cases when either a
memory reclaim process, or a memory reclaim work item is flushed from a
context not marked as memory reclaim safe.
This is correct when flushing, but when called from the
cancel(_delayed)_work_sync() paths it is a false positive because work is
either already running, or will not be running at all. Therefore
cancelling it is safe and we can relax the warning criteria by letting the
helper know of the calling context.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@igalia.com>
Fixes: fca839c00a ("workqueue: warn if memory reclaim tries to flush !WQ_MEM_RECLAIM workqueue")
References: 746ae46c11 ("drm/sched: Mark scheduler work queues with WQ_MEM_RECLAIM")
Cc: Tejun Heo <tj@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Christian König <christian.koenig@amd.com
Cc: Matthew Brost <matthew.brost@intel.com>
Cc: <stable@vger.kernel.org> # v4.5+
Signed-off-by: Tejun Heo <tj@kernel.org>
If dup_mmap() encounters an issue, currently uprobe is able to access the
relevant mm via the reverse mapping (in build_map_info()), and if we are
very unlucky with a race window, observe invalid XA_ZERO_ENTRY state which
we establish as part of the fork error path.
This occurs because uprobe_write_opcode() invokes anon_vma_prepare() which
in turn invokes find_mergeable_anon_vma() that uses a VMA iterator,
invoking vma_iter_load() which uses the advanced maple tree API and thus
is able to observe XA_ZERO_ENTRY entries added to dup_mmap() in commit
d240629148 ("fork: use __mt_dup() to duplicate maple tree in
dup_mmap()").
This change was made on the assumption that only process tear-down code
would actually observe (and make use of) these values. However this very
unlikely but still possible edge case with uprobes exists and
unfortunately does make these observable.
The uprobe operation prevents races against the dup_mmap() operation via
the dup_mmap_sem semaphore, which is acquired via uprobe_start_dup_mmap()
and dropped via uprobe_end_dup_mmap(), and held across
register_for_each_vma() prior to invoking build_map_info() which does the
reverse mapping lookup.
Currently these are acquired and dropped within dup_mmap(), which exposes
the race window prior to error handling in the invoking dup_mm() which
tears down the mm.
We can avoid all this by just moving the invocation of
uprobe_start_dup_mmap() and uprobe_end_dup_mmap() up a level to dup_mm()
and only release this lock once the dup_mmap() operation succeeds or clean
up is done.
This means that the uprobe code can never observe an incompletely
constructed mm and resolves the issue in this case.
Link: https://lkml.kernel.org/r/20241210172412.52995-1-lorenzo.stoakes@oracle.com
Fixes: d240629148 ("fork: use __mt_dup() to duplicate maple tree in dup_mmap()")
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reported-by: syzbot+2d788f4f7cb660dac4b7@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/6756d273.050a0220.2477f.003d.GAE@google.com/
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Ian Rogers <irogers@google.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jann Horn <jannh@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Kan Liang <kan.liang@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peng Zhang <zhangpeng.00@bytedance.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In PREEMPT_RT, kmalloc(GFP_ATOMIC) is still not safe in non preemptible
context. bpf_mem_alloc must be used in PREEMPT_RT. This patch is
to enforce bpf_mem_alloc in the bpf_local_storage when CONFIG_PREEMPT_RT
is enabled.
[ 35.118559] BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48
[ 35.118566] in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1832, name: test_progs
[ 35.118569] preempt_count: 1, expected: 0
[ 35.118571] RCU nest depth: 1, expected: 1
[ 35.118577] INFO: lockdep is turned off.
...
[ 35.118647] __might_resched+0x433/0x5b0
[ 35.118677] rt_spin_lock+0xc3/0x290
[ 35.118700] ___slab_alloc+0x72/0xc40
[ 35.118723] __kmalloc_noprof+0x13f/0x4e0
[ 35.118732] bpf_map_kzalloc+0xe5/0x220
[ 35.118740] bpf_selem_alloc+0x1d2/0x7b0
[ 35.118755] bpf_local_storage_update+0x2fa/0x8b0
[ 35.118784] bpf_sk_storage_get_tracing+0x15a/0x1d0
[ 35.118791] bpf_prog_9a118d86fca78ebb_trace_inet_sock_set_state+0x44/0x66
[ 35.118795] bpf_trace_run3+0x222/0x400
[ 35.118820] __bpf_trace_inet_sock_set_state+0x11/0x20
[ 35.118824] trace_inet_sock_set_state+0x112/0x130
[ 35.118830] inet_sk_state_store+0x41/0x90
[ 35.118836] tcp_set_state+0x3b3/0x640
There is no need to adjust the gfp_flags passing to the
bpf_mem_cache_alloc_flags() which only honors the GFP_KERNEL.
The verifier has ensured GFP_KERNEL is passed only in sleepable context.
It has been an old issue since the first introduction of the
bpf_local_storage ~5 years ago, so this patch targets the bpf-next.
bpf_mem_alloc is needed to solve it, so the Fixes tag is set
to the commit when bpf_mem_alloc was first used in the bpf_local_storage.
Fixes: 08a7ce384e ("bpf: Use bpf_mem_cache_alloc/free in bpf_local_storage_elem")
Reported-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20241218193000.2084281-1-martin.lau@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Function sugov_eas_rebuild_sd() defined in the schedutil cpufreq governor
implements generic functionality that may be useful in other places. In
particular, there is a plan to use it in the intel_pstate driver in the
future.
For this reason, move it from schedutil to the energy model code and
rename it to em_rebuild_sched_domains().
This also helps to get rid of some #ifdeffery in schedutil which is a
plus.
No intentional functional impact.
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Reviewed-by: Christian Loehle <christian.loehle@arm.com>
The TP_printk() of a TRACE_EVENT() is a generic printf format that any
developer can create for their event. It may include pointers to strings
and such. A boot mapped buffer may contain data from a previous kernel
where the strings addresses are different.
One solution is to copy the event content and update the pointers by the
recorded delta, but a simpler solution (for now) is to just use the
print_fields() function to print these events. The print_fields() function
just iterates the fields and prints them according to what type they are,
and ignores the TP_printk() format from the event itself.
To understand the difference, when printing via TP_printk() the output
looks like this:
4582.696626: kmem_cache_alloc: call_site=getname_flags+0x47/0x1f0 ptr=00000000e70e10e0 bytes_req=4096 bytes_alloc=4096 gfp_flags=GFP_KERNEL node=-1 accounted=false
4582.696629: kmem_cache_alloc: call_site=alloc_empty_file+0x6b/0x110 ptr=0000000095808002 bytes_req=360 bytes_alloc=384 gfp_flags=GFP_KERNEL node=-1 accounted=false
4582.696630: kmem_cache_alloc: call_site=security_file_alloc+0x24/0x100 ptr=00000000576339c3 bytes_req=16 bytes_alloc=16 gfp_flags=GFP_KERNEL|__GFP_ZERO node=-1 accounted=false
4582.696653: kmem_cache_free: call_site=do_sys_openat2+0xa7/0xd0 ptr=00000000e70e10e0 name=names_cache
But when printing via print_fields() (echo 1 > /sys/kernel/tracing/options/fields)
the same event output looks like this:
4582.696626: kmem_cache_alloc: call_site=0xffffffff92d10d97 (-1831793257) ptr=0xffff9e0e8571e000 (-107689771147264) bytes_req=0x1000 (4096) bytes_alloc=0x1000 (4096) gfp_flags=0xcc0 (3264) node=0xffffffff (-1) accounted=(0)
4582.696629: kmem_cache_alloc: call_site=0xffffffff92d0250b (-1831852789) ptr=0xffff9e0e8577f800 (-107689770747904) bytes_req=0x168 (360) bytes_alloc=0x180 (384) gfp_flags=0xcc0 (3264) node=0xffffffff (-1) accounted=(0)
4582.696630: kmem_cache_alloc: call_site=0xffffffff92efca74 (-1829778828) ptr=0xffff9e0e8d35d3b0 (-107689640864848) bytes_req=0x10 (16) bytes_alloc=0x10 (16) gfp_flags=0xdc0 (3520) node=0xffffffff (-1) accounted=(0)
4582.696653: kmem_cache_free: call_site=0xffffffff92cfbea7 (-1831879001) ptr=0xffff9e0e8571e000 (-107689771147264) name=names_cache
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241218141507.28389a1d@gandalf.local.home
Fixes: 07714b4bb3 ("tracing: Handle old buffer mappings for event strings and functions")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Pull tracing fixes from Steven Rostedt:
"Replace trace_check_vprintf() with test_event_printk() and
ignore_event()
The function test_event_printk() checks on boot up if the trace event
printf() formats dereference any pointers, and if they do, it then
looks at the arguments to make sure that the pointers they dereference
will exist in the event on the ring buffer. If they do not, it issues
a WARN_ON() as it is a likely bug.
But this isn't the case for the strings that can be dereferenced with
"%s", as some trace events (notably RCU and some IPI events) save a
pointer to a static string in the ring buffer. As the string it points
to lives as long as the kernel is running, it is not a bug to
reference it, as it is guaranteed to be there when the event is read.
But it is also possible (and a common bug) to point to some allocated
string that could be freed before the trace event is read and the
dereference is to bad memory. This case requires a run time check.
The previous way to handle this was with trace_check_vprintf() that
would process the printf format piece by piece and send what it didn't
care about to vsnprintf() to handle arguments that were not strings.
This kept it from having to reimplement vsnprintf(). But it relied on
va_list implementation and for architectures that copied the va_list
and did not pass it by reference, it wasn't even possible to do this
check and it would be skipped. As 64bit x86 passed va_list by
reference, most events were tested and this kept out bugs where
strings would have been dereferenced after being freed.
Instead of relying on the implementation of va_list, extend the boot
up test_event_printk() function to validate all the "%s" strings that
can be validated at boot, and for the few events that point to strings
outside the ring buffer, flag both the event and the field that is
dereferenced as "needs_test". Then before the event is printed, a call
to ignore_event() is made, and if the event has the flag set, it
iterates all its fields and for every field that is to be tested, it
will read the pointer directly from the event in the ring buffer and
make sure that it is valid. If the pointer is not valid, it will print
a WARN_ON(), print out to the trace that the event has unsafe memory
and ignore the print format.
With this new update, the trace_check_vprintf() can be safely removed
and now all events can be verified regardless of architecture"
* tag 'trace-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
tracing: Check "%s" dereference via the field and not the TP_printk format
tracing: Add "%s" check in test_event_printk()
tracing: Add missing helper functions in event pointer dereference check
tracing: Fix test_event_printk() to process entire print argument
A redundant frequency update is only truly needed when there is a policy
limits change with a driver that specifies CPUFREQ_NEED_UPDATE_LIMITS.
In spite of that, drivers specifying CPUFREQ_NEED_UPDATE_LIMITS receive a
frequency update _all the time_, not just for a policy limits change,
because need_freq_update is never cleared.
Furthermore, ignore_dl_rate_limit()'s usage of need_freq_update also leads
to a redundant frequency update, regardless of whether or not the driver
specifies CPUFREQ_NEED_UPDATE_LIMITS, when the next chosen frequency is the
same as the current one.
Fix the superfluous updates by only honoring CPUFREQ_NEED_UPDATE_LIMITS
when there's a policy limits change, and clearing need_freq_update when a
requisite redundant update occurs.
This is neatly achieved by moving up the CPUFREQ_NEED_UPDATE_LIMITS test
and instead setting need_freq_update to false in sugov_update_next_freq().
Fixes: 600f5badb7 ("cpufreq: schedutil: Don't skip freq update when limits change")
Signed-off-by: Sultan Alsawaf (unemployed) <sultan@kerneltoast.com>
Reviewed-by: Christian Loehle <christian.loehle@arm.com>
Link: https://patch.msgid.link/20241212015734.41241-2-sultan@kerneltoast.com
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
On x86-64 calling bpf_get_smp_processor_id() in a kernel with CONFIG_SMP
disabled can trigger the following bug, as pcpu_hot is unavailable:
[ 8.471774] BUG: unable to handle page fault for address: 00000000936a290c
[ 8.471849] #PF: supervisor read access in kernel mode
[ 8.471881] #PF: error_code(0x0000) - not-present page
Fix by inlining a return 0 in the !CONFIG_SMP case.
Fixes: 1ae6921009 ("bpf: inline bpf_get_smp_processor_id() helper")
Signed-off-by: Andrea Righi <arighi@nvidia.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241217195813.622568-1-arighi@nvidia.com
Pull ftrace fixes from Steven Rostedt:
- Always try to initialize the idle functions when graph tracer starts
A bug was found that when a CPU is offline when graph tracing starts
and then comes online, that CPU is not traced. The fix to that was to
move the initialization of the idle shadow stack over to the hot plug
online logic, which also handle onlined CPUs. The issue was that it
removed the initialization of the shadow stack when graph tracing
starts, but the callbacks to the hot plug logic do nothing if graph
tracing isn't currently running. Although that fix fixed the onlining
of a CPU during tracing, it broke the CPUs that were already online.
- Have microblaze not try to get the "true parent" in function tracing
If function tracing and graph tracing are both enabled at the same
time the parent of the functions traced by the function tracer may
sometimes be the graph tracing trampoline. The graph tracing hijacks
the return pointer of the function to trace it, but that can
interfere with the function tracing parent output.
This was fixed by using the ftrace_graph_ret_addr() function passing
in the kernel stack pointer using the ftrace_regs_get_stack_pointer()
function. But Al Viro reported that Microblaze does not implement the
kernel_stack_pointer(regs) helper function that
ftrace_regs_get_stack_pointer() uses and fails to compile when
function graph tracing is enabled.
It was first thought that this was a microblaze issue, but the real
cause is that this only works when an architecture implements
HAVE_DYNAMIC_FTRACE_WITH_ARGS, as a requirement for that config is to
have ftrace always pass a valid ftrace_regs to the callbacks. That
also means that the architecture supports
ftrace_regs_get_stack_pointer()
Microblaze does not set HAVE_DYNAMIC_FTRACE_WITH_ARGS nor does it
implement ftrace_regs_get_stack_pointer() which caused it to fail to
build. Only implement the "true parent" logic if an architecture has
that config set"
* tag 'ftrace-v6.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace:
ftrace: Do not find "true_parent" if HAVE_DYNAMIC_FTRACE_WITH_ARGS is not set
fgraph: Still initialize idle shadow stacks when starting
Bert reported seeing occasional boot hangs when running with
PREEPT_RT and bisected it down to commit 894d1b3db4
("locking/mutex: Remove wakeups from under mutex::wait_lock").
It looks like I missed a few spots where we drop the wait_lock and
potentially call into schedule without waking up the tasks on the
wake_q structure. Since the tasks being woken are ww_mutex tasks
they need to be able to run to release the mutex and unblock the
task that currently is planning to wake them. Thus we can deadlock.
So make sure we wake the wake_q tasks when we unlock the wait_lock.
Closes: https://lore.kernel.org/lkml/20241211182502.2915-1-spasswolf@web.de
Fixes: 894d1b3db4 ("locking/mutex: Remove wakeups from under mutex::wait_lock")
Reported-by: Bert Karwatzki <spasswolf@web.de>
Signed-off-by: John Stultz <jstultz@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20241212222138.2400498-1-jstultz@google.com
CPU controller limits are not properly enforced during CPU hotplug
operations, particularly during CPU offline. When a CPU goes offline,
throttled processes are unintentionally being unthrottled across all CPUs
in the system, allowing them to exceed their assigned quota limits.
Consider below for an example,
Assigning 6.25% bandwidth limit to a cgroup
in a 8 CPU system, where, workload is running 8 threads for 20 seconds at
100% CPU utilization, expected (user+sys) time = 10 seconds.
$ cat /sys/fs/cgroup/test/cpu.max
50000 100000
$ ./ebizzy -t 8 -S 20 // non-hotplug case
real 20.00 s
user 10.81 s // intended behaviour
sys 0.00 s
$ ./ebizzy -t 8 -S 20 // hotplug case
real 20.00 s
user 14.43 s // Workload is able to run for 14 secs
sys 0.00 s // when it should have only run for 10 secs
During CPU hotplug, scheduler domains are rebuilt and cpu_attach_domain
is called for every active CPU to update the root domain. That ends up
calling rq_offline_fair which un-throttles any throttled hierarchies.
Unthrottling should only occur for the CPU being hotplugged to allow its
throttled processes to become runnable and get migrated to other CPUs.
With current patch applied,
$ ./ebizzy -t 8 -S 20 // hotplug case
real 21.00 s
user 10.16 s // intended behaviour
sys 0.00 s
This also has another symptom, when a CPU goes offline, and if the cfs_rq
is not in throttled state and the runtime_remaining still had plenty
remaining, it gets reset to 1 here, causing the runtime_remaining of
cfs_rq to be quickly depleted.
Note: hotplug operation (online, offline) was performed in while(1) loop
v3: https://lore.kernel.org/all/20241210102346.228663-2-vishalc@linux.ibm.com
v2: https://lore.kernel.org/all/20241207052730.1746380-2-vishalc@linux.ibm.com
v1: https://lore.kernel.org/all/20241126064812.809903-2-vishalc@linux.ibm.com
Suggested-by: Zhang Qiao <zhangqiao22@huawei.com>
Signed-off-by: Vishal Chourasia <vishalc@linux.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Vincent Guittot <vincent.guittot@linaro.org>
Tested-by: Madadi Vineeth Reddy <vineethr@linux.ibm.com>
Tested-by: Samir Mulani <samir@linux.ibm.com>
Link: https://lore.kernel.org/r/20241212043102.584863-2-vishalc@linux.ibm.com
The TP_printk() portion of a trace event is executed at the time a event
is read from the trace. This can happen seconds, minutes, hours, days,
months, years possibly later since the event was recorded. If the print
format contains a dereference to a string via "%s", and that string was
allocated, there's a chance that string could be freed before it is read
by the trace file.
To protect against such bugs, there are two functions that verify the
event. The first one is test_event_printk(), which is called when the
event is created. It reads the TP_printk() format as well as its arguments
to make sure nothing may be dereferencing a pointer that was not copied
into the ring buffer along with the event. If it is, it will trigger a
WARN_ON().
For strings that use "%s", it is not so easy. The string may not reside in
the ring buffer but may still be valid. Strings that are static and part
of the kernel proper which will not be freed for the life of the running
system, are safe to dereference. But to know if it is a pointer to a
static string or to something on the heap can not be determined until the
event is triggered.
This brings us to the second function that tests for the bad dereferencing
of strings, trace_check_vprintf(). It would walk through the printf format
looking for "%s", and when it finds it, it would validate that the pointer
is safe to read. If not, it would produces a WARN_ON() as well and write
into the ring buffer "[UNSAFE-MEMORY]".
The problem with this is how it used va_list to have vsnprintf() handle
all the cases that it didn't need to check. Instead of re-implementing
vsnprintf(), it would make a copy of the format up to the %s part, and
call vsnprintf() with the current va_list ap variable, where the ap would
then be ready to point at the string in question.
For architectures that passed va_list by reference this was possible. For
architectures that passed it by copy it was not. A test_can_verify()
function was used to differentiate between the two, and if it wasn't
possible, it would disable it.
Even for architectures where this was feasible, it was a stretch to rely
on such a method that is undocumented, and could cause issues later on
with new optimizations of the compiler.
Instead, the first function test_event_printk() was updated to look at
"%s" as well. If the "%s" argument is a pointer outside the event in the
ring buffer, it would find the field type of the event that is the problem
and mark the structure with a new flag called "needs_test". The event
itself will be marked by TRACE_EVENT_FL_TEST_STR to let it be known that
this event has a field that needs to be verified before the event can be
printed using the printf format.
When the event fields are created from the field type structure, the
fields would copy the field type's "needs_test" value.
Finally, before being printed, a new function ignore_event() is called
which will check if the event has the TEST_STR flag set (if not, it
returns false). If the flag is set, it then iterates through the events
fields looking for the ones that have the "needs_test" flag set.
Then it uses the offset field from the field structure to find the pointer
in the ring buffer event. It runs the tests to make sure that pointer is
safe to print and if not, it triggers the WARN_ON() and also adds to the
trace output that the event in question has an unsafe memory access.
The ignore_event() makes the trace_check_vprintf() obsolete so it is
removed.
Link: https://lore.kernel.org/all/CAHk-=wh3uOnqnZPpR0PeLZZtyWbZLboZ7cHLCKRWsocvs9Y7hQ@mail.gmail.com/
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.848621576@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The test_event_printk() code makes sure that when a trace event is
registered, any dereferenced pointers in from the event's TP_printk() are
pointing to content in the ring buffer. But currently it does not handle
"%s", as there's cases where the string pointer saved in the ring buffer
points to a static string in the kernel that will never be freed. As that
is a valid case, the pointer needs to be checked at runtime.
Currently the runtime check is done via trace_check_vprintf(), but to not
have to replicate everything in vsnprintf() it does some logic with the
va_list that may not be reliable across architectures. In order to get rid
of that logic, more work in the test_event_printk() needs to be done. Some
of the strings can be validated at this time when it is obvious the string
is valid because the string will be saved in the ring buffer content.
Do all the validation of strings in the ring buffer at boot in
test_event_printk(), and make sure that the field of the strings that
point into the kernel are accessible. This will allow adding checks at
runtime that will validate the fields themselves and not rely on paring
the TP_printk() format at runtime.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.685917008@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The process_pointer() helper function looks to see if various trace event
macros are used. These macros are for storing data in the event. This
makes it safe to dereference as the dereference will then point into the
event on the ring buffer where the content of the data stays with the
event itself.
A few helper functions were missing. Those were:
__get_rel_dynamic_array()
__get_dynamic_array_len()
__get_rel_dynamic_array_len()
__get_rel_sockaddr()
Also add a helper function find_print_string() to not need to use a middle
man variable to test if the string exists.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.521836792@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The test_event_printk() analyzes print formats of trace events looking for
cases where it may dereference a pointer that is not in the ring buffer
which can possibly be a bug when the trace event is read from the ring
buffer and the content of that pointer no longer exists.
The function needs to accurately go from one print format argument to the
next. It handles quotes and parenthesis that may be included in an
argument. When it finds the start of the next argument, it uses a simple
"c = strstr(fmt + i, ',')" to find the end of that argument!
In order to include "%s" dereferencing, it needs to process the entire
content of the print format argument and not just the content of the first
',' it finds. As there may be content like:
({ const char *saved_ptr = trace_seq_buffer_ptr(p); static const char
*access_str[] = { "---", "--x", "w--", "w-x", "-u-", "-ux", "wu-", "wux"
}; union kvm_mmu_page_role role; role.word = REC->role;
trace_seq_printf(p, "sp gen %u gfn %llx l%u %u-byte q%u%s %s%s" " %snxe
%sad root %u %s%c", REC->mmu_valid_gen, REC->gfn, role.level,
role.has_4_byte_gpte ? 4 : 8, role.quadrant, role.direct ? " direct" : "",
access_str[role.access], role.invalid ? " invalid" : "", role.efer_nx ? ""
: "!", role.ad_disabled ? "!" : "", REC->root_count, REC->unsync ?
"unsync" : "sync", 0); saved_ptr; })
Which is an example of a full argument of an existing event. As the code
already handles finding the next print format argument, process the
argument at the end of it and not the start of it. This way it has both
the start of the argument as well as the end of it.
Add a helper function "process_pointer()" that will do the processing during
the loop as well as at the end. It also makes the code cleaner and easier
to read.
Cc: stable@vger.kernel.org
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/20241217024720.362271189@goodmis.org
Fixes: 5013f454a3 ("tracing: Add check of trace event print fmts for dereferencing pointers")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>