Commit Graph

997 Commits

Author SHA1 Message Date
Maxim Mikityanskiy
36ee561b59 bpf: Fix verifier id tracking of scalars on spill
[ Upstream commit 713274f1f2 ]

The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:

1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
   roll a random (unknown to the verifier) bit in the lower half. The
   rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
   register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
   another register. Due to a bug in the verifier, the ID will be
   preserved, although the new register will contain only the lower 32
   bits, i.e. all zeros except one random bit.

At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.

5. Compare the new 32-bit register with 0. In the branch where it's
   equal to 0, the verifier will believe that the original 64-bit
   register is also 0, because it has the same ID, but its actual value
   still contains the rogue number in the upper half.
   Some optimizations of the verifier prevent the actual bypass, so
   extra care is needed: the comparison must be between two registers,
   and both branches must be reachable (this is why one random bit is
   needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
   believe that the offset is 0, while in reality it's the given number.

The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.

Fixes: 354e8f1970 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-06-28 11:14:11 +02:00
Krister Johansen
6aaa750ca6 bpf: ensure main program has an extable
commit 0108a4e9f3 upstream.

When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success.  Subsequent calls to the JIT are bypassed when this value is
non-NULL.  This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable.  Extables are only created during JIT.  Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable.  Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.

Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load().  This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.

Cc: stable@vger.kernel.org
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-06-28 11:14:09 +02:00
Will Deacon
5ed48306af bpf: Fix mask generation for 32-bit narrow loads of 64-bit fields
commit 0613d8ca9a upstream.

A narrow load from a 64-bit context field results in a 64-bit load
followed potentially by a 64-bit right-shift and then a bitwise AND
operation to extract the relevant data.

In the case of a 32-bit access, an immediate mask of 0xffffffff is used
to construct a 64-bit BPP_AND operation which then sign-extends the mask
value and effectively acts as a glorified no-op. For example:

0:	61 10 00 00 00 00 00 00	r0 = *(u32 *)(r1 + 0)

results in the following code generation for a 64-bit field:

	ldr	x7, [x7]	// 64-bit load
	mov	x10, #0xffffffffffffffff
	and	x7, x7, x10

Fix the mask generation so that narrow loads always perform a 32-bit AND
operation:

	ldr	x7, [x7]	// 64-bit load
	mov	w10, #0xffffffff
	and	w7, w7, w10

Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Fixes: 31fd85816d ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230518102528.1341-1-will@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2023-05-30 14:17:25 +01:00
Yafang
b9168d41b8 bpf: Add preempt_count_{sub,add} into btf id deny list
[ Upstream commit c11bd04648 ]

The recursion check in __bpf_prog_enter* and __bpf_prog_exit*
leave preempt_count_{sub,add} unprotected. When attaching trampoline to
them we get panic as follows,

[  867.843050] BUG: TASK stack guard page was hit at 0000000009d325cf (stack is 0000000046a46a15..00000000537e7b28)
[  867.843064] stack guard page: 0000 [#1] PREEMPT SMP NOPTI
[  867.843067] CPU: 8 PID: 11009 Comm: trace Kdump: loaded Not tainted 6.2.0+ #4
[  867.843100] Call Trace:
[  867.843101]  <TASK>
[  867.843104]  asm_exc_int3+0x3a/0x40
[  867.843108] RIP: 0010:preempt_count_sub+0x1/0xa0
[  867.843135]  __bpf_prog_enter_recur+0x17/0x90
[  867.843148]  bpf_trampoline_6442468108_0+0x2e/0x1000
[  867.843154]  ? preempt_count_sub+0x1/0xa0
[  867.843157]  preempt_count_sub+0x5/0xa0
[  867.843159]  ? migrate_enable+0xac/0xf0
[  867.843164]  __bpf_prog_exit_recur+0x2d/0x40
[  867.843168]  bpf_trampoline_6442468108_0+0x55/0x1000
...
[  867.843788]  preempt_count_sub+0x5/0xa0
[  867.843793]  ? migrate_enable+0xac/0xf0
[  867.843829]  __bpf_prog_exit_recur+0x2d/0x40
[  867.843837] BUG: IRQ stack guard page was hit at 0000000099bd8228 (stack is 00000000b23e2bc4..000000006d95af35)
[  867.843841] BUG: IRQ stack guard page was hit at 000000005ae07924 (stack is 00000000ffd69623..0000000014eb594c)
[  867.843843] BUG: IRQ stack guard page was hit at 00000000028320f0 (stack is 00000000034b6438..0000000078d1bcec)
[  867.843842]  bpf_trampoline_6442468108_0+0x55/0x1000
...

That is because in __bpf_prog_exit_recur, the preempt_count_{sub,add} are
called after prog->active is decreased.

Fixing this by adding these two functions into btf ids deny list.

Suggested-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Yafang <laoar.shao@gmail.com>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Jiri Olsa <olsajiri@gmail.com>
Acked-by: Hao Luo <haoluo@google.com>
Link: https://lore.kernel.org/r/20230413025248.79764-1-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-24 17:30:06 +01:00
Dave Marchevsky
c41de5c67d bpf: Fix struct_meta lookup for bpf_obj_free_fields kfunc call
[ Upstream commit f6a6a5a976 ]

bpf_obj_drop_impl has a void return type. In check_kfunc_call, the "else
if" which sets insn_aux->kptr_struct_meta for bpf_obj_drop_impl is
surrounded by a larger if statement which checks btf_type_is_ptr. As a
result:

  * The bpf_obj_drop_impl-specific code will never execute
  * The btf_struct_meta input to bpf_obj_drop is always NULL
  * __bpf_obj_drop_impl will always see a NULL btf_record when called
    from BPF program, and won't call bpf_obj_free_fields
  * program-allocated kptrs which have fields that should be cleaned up
    by bpf_obj_free_fields may instead leak resources

This patch adds a btf_type_is_void branch to the larger if and moves
special handling for bpf_obj_drop_impl there, fixing the issue.

Fixes: ac9f06050a ("bpf: Introduce bpf_obj_drop")
Cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230403200027.2271029-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:17:15 +09:00
Andrii Nakryiko
c079b05ccb bpf: factor out fetching basic kfunc metadata
[ Upstream commit 07236eab7a ]

Factor out logic to fetch basic kfunc metadata based on struct bpf_insn.
This is not exactly short or trivial code to just copy/paste and this
information is sometimes necessary in other parts of the verifier logic.
Subsequent patches will rely on this to determine if an instruction is
a kfunc call to iterator next method.

No functional changes intended, including that verbose() warning
behavior when kfunc is not allowed for a particular program type.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230308184121.1165081-2-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Stable-dep-of: f6a6a5a976 ("bpf: Fix struct_meta lookup for bpf_obj_free_fields kfunc call")
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:17:15 +09:00
Daniel Borkmann
32057953f5 bpf: Fix __reg_bound_offset 64->32 var_off subreg propagation
[ Upstream commit 7be14c1c90 ]

Xu reports that after commit 3f50f132d8 ("bpf: Verifier, do explicit ALU32
bounds tracking"), the following BPF program is rejected by the verifier:

   0: (61) r2 = *(u32 *)(r1 +0)          ; R2_w=pkt(off=0,r=0,imm=0)
   1: (61) r3 = *(u32 *)(r1 +4)          ; R3_w=pkt_end(off=0,imm=0)
   2: (bf) r1 = r2
   3: (07) r1 += 1
   4: (2d) if r1 > r3 goto pc+8
   5: (71) r1 = *(u8 *)(r2 +0)           ; R1_w=scalar(umax=255,var_off=(0x0; 0xff))
   6: (18) r0 = 0x7fffffffffffff10
   8: (0f) r1 += r0                      ; R1_w=scalar(umin=0x7fffffffffffff10,umax=0x800000000000000f)
   9: (18) r0 = 0x8000000000000000
  11: (07) r0 += 1
  12: (ad) if r0 < r1 goto pc-2
  13: (b7) r0 = 0
  14: (95) exit

And the verifier log says:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (61) r2 = *(u32 *)(r1 +0)          ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  1: (61) r3 = *(u32 *)(r1 +4)          ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
  2: (bf) r1 = r2                       ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  3: (07) r1 += 1                       ; R1_w=pkt(off=1,r=0,imm=0)
  4: (2d) if r1 > r3 goto pc+8          ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
  5: (71) r1 = *(u8 *)(r2 +0)           ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
  6: (18) r0 = 0x7fffffffffffff10       ; R0_w=9223372036854775568
  8: (0f) r1 += r0                      ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
  9: (18) r0 = 0x8000000000000000       ; R0_w=-9223372036854775808
  11: (07) r0 += 1                      ; R0_w=-9223372036854775807
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
  13: (b7) r0 = 0                       ; R0_w=0
  14: (95) exit

  from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775806
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775810,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  [...]

  from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775794
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775822,umax=9223372036854775822,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  from 12 to 11: R0_w=-9223372036854775794 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775793
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775823,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  from 12 to 11: R0_w=-9223372036854775793 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff)) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775792
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775792 R1=scalar(umin=9223372036854775824,umax=9223372036854775823,var_off=(0x8000000000000000; 0xffffffff))
  13: safe

  [...]

The 64bit umin=9223372036854775810 bound continuously bumps by +1 while
umax=9223372036854775823 stays as-is until the verifier complexity limit
is reached and the program gets finally rejected. During this simulation,
the umin also eventually surpasses umax. Looking at the first 'from 12
to 11' output line from the loop, R1 has the following state:

  R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
              umax=0x800000000000000f (9223372036854775823),
          var_off=(0x8000000000000000;
                           0xffffffff))

The var_off has technically not an inconsistent state but it's very
imprecise and far off surpassing 64bit umax bounds whereas the expected
output with refined known bits in var_off should have been like:

  R1_w=scalar(umin=0x8000000000000002 (9223372036854775810),
              umax=0x800000000000000f (9223372036854775823),
          var_off=(0x8000000000000000;
                                  0xf))

In the above log, var_off stays as var_off=(0x8000000000000000; 0xffffffff)
and does not converge into a narrower mask where more bits become known,
eventually transforming R1 into a constant upon umin=9223372036854775823,
umax=9223372036854775823 case where the verifier would have terminated and
let the program pass.

The __reg_combine_64_into_32() marks the subregister unknown and propagates
64bit {s,u}min/{s,u}max bounds to their 32bit equivalents iff they are within
the 32bit universe. The question came up whether __reg_combine_64_into_32()
should special case the situation that when 64bit {s,u}min bounds have
the same value as 64bit {s,u}max bounds to then assign the latter as
well to the 32bit reg->{s,u}32_{min,max}_value. As can be seen from the
above example however, that is just /one/ special case and not a /generic/
solution given above example would still not be addressed this way and
remain at an imprecise var_off=(0x8000000000000000; 0xffffffff).

The improvement is needed in __reg_bound_offset() to refine var32_off with
the updated var64_off instead of the prior reg->var_off. The reg_bounds_sync()
code first refines information about the register's min/max bounds via
__update_reg_bounds() from the current var_off, then in __reg_deduce_bounds()
from sign bit and with the potentially learned bits from bounds it'll
update the var_off tnum in __reg_bound_offset(). For example, intersecting
with the old var_off might have improved bounds slightly, e.g. if umax
was 0x7f...f and var_off was (0; 0xf...fc), then new var_off will then
result in (0; 0x7f...fc). The intersected var64_off holds then the
universe which is a superset of var32_off. The point for the latter is
not to broaden, but to further refine known bits based on the intersection
of var_off with 32 bit bounds, so that we later construct the final var_off
from upper and lower 32 bits. The final __update_reg_bounds() can then
potentially still slightly refine bounds if more bits became known from the
new var_off.

After the improvement, we can see R1 converging successively:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (61) r2 = *(u32 *)(r1 +0)          ; R1=ctx(off=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  1: (61) r3 = *(u32 *)(r1 +4)          ; R1=ctx(off=0,imm=0) R3_w=pkt_end(off=0,imm=0)
  2: (bf) r1 = r2                       ; R1_w=pkt(off=0,r=0,imm=0) R2_w=pkt(off=0,r=0,imm=0)
  3: (07) r1 += 1                       ; R1_w=pkt(off=1,r=0,imm=0)
  4: (2d) if r1 > r3 goto pc+8          ; R1_w=pkt(off=1,r=1,imm=0) R3_w=pkt_end(off=0,imm=0)
  5: (71) r1 = *(u8 *)(r2 +0)           ; R1_w=scalar(umax=255,var_off=(0x0; 0xff)) R2_w=pkt(off=0,r=1,imm=0)
  6: (18) r0 = 0x7fffffffffffff10       ; R0_w=9223372036854775568
  8: (0f) r1 += r0                      ; R0_w=9223372036854775568 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775823,s32_min=-240,s32_max=15)
  9: (18) r0 = 0x8000000000000000       ; R0_w=-9223372036854775808
  11: (07) r0 += 1                      ; R0_w=-9223372036854775807
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775568,umax=9223372036854775809)
  13: (b7) r0 = 0                       ; R0_w=0
  14: (95) exit

  from 12 to 11: R0_w=-9223372036854775807 R1_w=scalar(umin=9223372036854775810,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775806
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775806 R1_w=-9223372036854775806
  13: safe

  from 12 to 11: R0_w=-9223372036854775806 R1_w=scalar(umin=9223372036854775811,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775805
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775805 R1_w=-9223372036854775805
  13: safe

  [...]

  from 12 to 11: R0_w=-9223372036854775798 R1=scalar(umin=9223372036854775819,umax=9223372036854775823,var_off=(0x8000000000000008; 0x7),s32_min=8,s32_max=15,u32_min=8,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775797
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775797 R1=-9223372036854775797
  13: safe

  from 12 to 11: R0_w=-9223372036854775797 R1=scalar(umin=9223372036854775820,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775796
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775796 R1=-9223372036854775796
  13: safe

  from 12 to 11: R0_w=-9223372036854775796 R1=scalar(umin=9223372036854775821,umax=9223372036854775823,var_off=(0x800000000000000c; 0x3),s32_min=12,s32_max=15,u32_min=12,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775795
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775795 R1=-9223372036854775795
  13: safe

  from 12 to 11: R0_w=-9223372036854775795 R1=scalar(umin=9223372036854775822,umax=9223372036854775823,var_off=(0x800000000000000e; 0x1),s32_min=14,s32_max=15,u32_min=14,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775794
  12: (ad) if r0 < r1 goto pc-2         ; R0_w=-9223372036854775794 R1=-9223372036854775794
  13: safe

  from 12 to 11: R0_w=-9223372036854775794 R1=-9223372036854775793 R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  11: (07) r0 += 1                      ; R0_w=-9223372036854775793
  12: (ad) if r0 < r1 goto pc-2
  last_idx 12 first_idx 12
  parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=scalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  last_idx 11 first_idx 11
  regs=1 stack=0 before 11: (07) r0 += 1
  parent didn't have regs=1 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=scalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  last_idx 12 first_idx 0
  regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=1 stack=0 before 11: (07) r0 += 1
  regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=1 stack=0 before 11: (07) r0 += 1
  regs=1 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=1 stack=0 before 11: (07) r0 += 1
  regs=1 stack=0 before 9: (18) r0 = 0x8000000000000000
  last_idx 12 first_idx 12
  parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775801 R1_r=Pscalar(umin=9223372036854775815,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2=pkt(off=0,r=1,imm=0) R3=pkt_end(off=0,imm=0) R10=fp0
  last_idx 11 first_idx 11
  regs=2 stack=0 before 11: (07) r0 += 1
  parent didn't have regs=2 stack=0 marks: R0_rw=P-9223372036854775805 R1_rw=Pscalar(umin=9223372036854775812,umax=9223372036854775823,var_off=(0x8000000000000000; 0xf),s32_min=0,s32_max=15,u32_max=15) R2_w=pkt(off=0,r=1,imm=0) R3_w=pkt_end(off=0,imm=0) R10=fp0
  last_idx 12 first_idx 0
  regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=2 stack=0 before 11: (07) r0 += 1
  regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=2 stack=0 before 11: (07) r0 += 1
  regs=2 stack=0 before 12: (ad) if r0 < r1 goto pc-2
  regs=2 stack=0 before 11: (07) r0 += 1
  regs=2 stack=0 before 9: (18) r0 = 0x8000000000000000
  regs=2 stack=0 before 8: (0f) r1 += r0
  regs=3 stack=0 before 6: (18) r0 = 0x7fffffffffffff10
  regs=2 stack=0 before 5: (71) r1 = *(u8 *)(r2 +0)
  13: safe

  from 4 to 13: safe
  verification time 322 usec
  stack depth 0
  processed 56 insns (limit 1000000) max_states_per_insn 1 total_states 3 peak_states 3 mark_read 1

This also fixes up a test case along with this improvement where we match
on the verifier log. The updated log now has a refined var_off, too.

Fixes: 3f50f132d8 ("bpf: Verifier, do explicit ALU32 bounds tracking")
Reported-by: Xu Kuohai <xukuohai@huaweicloud.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Link: https://lore.kernel.org/bpf/20230314203424.4015351-2-xukuohai@huaweicloud.com
Link: https://lore.kernel.org/bpf/20230322213056.2470-1-daniel@iogearbox.net
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:17:13 +09:00
JP Kobryn
03a9de6910 bpf: return long from bpf_map_ops funcs
[ Upstream commit d7ba4cc900 ]

This patch changes the return types of bpf_map_ops functions to long, where
previously int was returned. Using long allows for bpf programs to maintain
the sign bit in the absence of sign extension during situations where
inlined bpf helper funcs make calls to the bpf_map_ops funcs and a negative
error is returned.

The definitions of the helper funcs are generated from comments in the bpf
uapi header at `include/uapi/linux/bpf.h`. The return type of these
helpers was previously changed from int to long in commit bdb7b79b4c. For
any case where one of the map helpers call the bpf_map_ops funcs that are
still returning 32-bit int, a compiler might not include sign extension
instructions to properly convert the 32-bit negative value a 64-bit
negative value.

For example:
bpf assembly excerpt of an inlined helper calling a kernel function and
checking for a specific error:

; err = bpf_map_update_elem(&mymap, &key, &val, BPF_NOEXIST);
  ...
  46:	call   0xffffffffe103291c	; htab_map_update_elem
; if (err && err != -EEXIST) {
  4b:	cmp    $0xffffffffffffffef,%rax ; cmp -EEXIST,%rax

kernel function assembly excerpt of return value from
`htab_map_update_elem` returning 32-bit int:

movl $0xffffffef, %r9d
...
movl %r9d, %eax

...results in the comparison:
cmp $0xffffffffffffffef, $0x00000000ffffffef

Fixes: bdb7b79b4c ("bpf: Switch most helper return values from 32-bit int to 64-bit long")
Tested-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Link: https://lore.kernel.org/r/20230322194754.185781-3-inwardvessel@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:17:13 +09:00
Luis Gerhorst
f6b05f8788 bpf: Remove misleading spec_v1 check on var-offset stack read
[ Upstream commit 082cdc69a4 ]

For every BPF_ADD/SUB involving a pointer, adjust_ptr_min_max_vals()
ensures that the resulting pointer has a constant offset if
bypass_spec_v1 is false. This is ensured by calling sanitize_check_bounds()
which in turn calls check_stack_access_for_ptr_arithmetic(). There,
-EACCESS is returned if the register's offset is not constant, thereby
rejecting the program.

In summary, an unprivileged user must never be able to create stack
pointers with a variable offset. That is also the case, because a
respective check in check_stack_write() is missing. If they were able
to create a variable-offset pointer, users could still use it in a
stack-write operation to trigger unsafe speculative behavior [1].

Because unprivileged users must already be prevented from creating
variable-offset stack pointers, viable options are to either remove
this check (replacing it with a clarifying comment), or to turn it
into a "verifier BUG"-message, also adding a similar check in
check_stack_write() (for consistency, as a second-level defense).
This patch implements the first option to reduce verifier bloat.

This check was introduced by commit 01f810ace9 ("bpf: Allow
variable-offset stack access") which correctly notes that
"variable-offset reads and writes are disallowed (they were already
disallowed for the indirect access case) because the speculative
execution checking code doesn't support them". However, it does not
further discuss why the check in check_stack_read() is necessary.
The code which made this check obsolete was also introduced in this
commit.

I have compiled ~650 programs from the Linux selftests, Linux samples,
Cilium, and libbpf/examples projects and confirmed that none of these
trigger the check in check_stack_read() [2]. Instead, all of these
programs are, as expected, already rejected when constructing the
variable-offset pointers. Note that the check in
check_stack_access_for_ptr_arithmetic() also prints "off=%d" while the
code removed by this patch does not (the error removed does not appear
in the "verification_error" values). For reproducibility, the
repository linked includes the raw data and scripts used to create
the plot.

  [1] https://arxiv.org/pdf/1807.03757.pdf
  [2] 53dc19fcf4/data/plots/23-02-26_23-56_bpftool/bpftool/0004-errors.pdf

Fixes: 01f810ace9 ("bpf: Allow variable-offset stack access")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230315165358.23701-1-gerhorst@cs.fau.de
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:17:12 +09:00
Andrii Nakryiko
9b784428bb bpf: fix precision propagation verbose logging
[ Upstream commit 34f0677e7a ]

Fix wrong order of frame index vs register/slot index in precision
propagation verbose (level 2) output. It's wrong and very confusing as is.

Fixes: 529409ea92 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230313184017.4083374-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:17:12 +09:00
Andrii Nakryiko
7d8d66d93d bpf: take into account liveness when propagating precision
[ Upstream commit 52c2b005a3 ]

When doing state comparison, if old state has register that is not
marked as REG_LIVE_READ, then we just skip comparison, regardless what's
the state of corresponing register in current state. This is because not
REG_LIVE_READ register is irrelevant for further program execution and
correctness. All good here.

But when we get to precision propagation, after two states were declared
equivalent, we don't take into account old register's liveness, and thus
attempt to propagate precision for register in current state even if
that register in old state was not REG_LIVE_READ anymore. This is bad,
because register in current state could be anything at all and this
could cause -EFAULT due to internal logic bugs.

Fix by taking into account REG_LIVE_READ liveness mark to keep the logic
in state comparison in sync with precision propagation.

Fixes: a3ce685dd0 ("bpf: fix precision tracking")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230309224131.57449-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-05-11 23:17:12 +09:00
Daniel Borkmann
71b547f561 bpf: Fix incorrect verifier pruning due to missing register precision taints
Juan Jose et al reported an issue found via fuzzing where the verifier's
pruning logic prematurely marks a program path as safe.

Consider the following program:

   0: (b7) r6 = 1024
   1: (b7) r7 = 0
   2: (b7) r8 = 0
   3: (b7) r9 = -2147483648
   4: (97) r6 %= 1025
   5: (05) goto pc+0
   6: (bd) if r6 <= r9 goto pc+2
   7: (97) r6 %= 1
   8: (b7) r9 = 0
   9: (bd) if r6 <= r9 goto pc+1
  10: (b7) r6 = 0
  11: (b7) r0 = 0
  12: (63) *(u32 *)(r10 -4) = r0
  13: (18) r4 = 0xffff888103693400 // map_ptr(ks=4,vs=48)
  15: (bf) r1 = r4
  16: (bf) r2 = r10
  17: (07) r2 += -4
  18: (85) call bpf_map_lookup_elem#1
  19: (55) if r0 != 0x0 goto pc+1
  20: (95) exit
  21: (77) r6 >>= 10
  22: (27) r6 *= 8192
  23: (bf) r1 = r0
  24: (0f) r0 += r6
  25: (79) r3 = *(u64 *)(r0 +0)
  26: (7b) *(u64 *)(r1 +0) = r3
  27: (95) exit

The verifier treats this as safe, leading to oob read/write access due
to an incorrect verifier conclusion:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (b7) r6 = 1024                     ; R6_w=1024
  1: (b7) r7 = 0                        ; R7_w=0
  2: (b7) r8 = 0                        ; R8_w=0
  3: (b7) r9 = -2147483648              ; R9_w=-2147483648
  4: (97) r6 %= 1025                    ; R6_w=scalar()
  5: (05) goto pc+0
  6: (bd) if r6 <= r9 goto pc+2         ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff00000000; 0xffffffff)) R9_w=-2147483648
  7: (97) r6 %= 1                       ; R6_w=scalar()
  8: (b7) r9 = 0                        ; R9=0
  9: (bd) if r6 <= r9 goto pc+1         ; R6=scalar(umin=1) R9=0
  10: (b7) r6 = 0                       ; R6_w=0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 9
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff8ad3886c2a00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1   ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
  19: (55) if r0 != 0x0 goto pc+1       ; R0=0
  20: (95) exit

  from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  21: (77) r6 >>= 10                    ; R6_w=0
  22: (27) r6 *= 8192                   ; R6_w=0
  23: (bf) r1 = r0                      ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
  24: (0f) r0 += r6
  last_idx 24 first_idx 19
  regs=40 stack=0 before 23: (bf) r1 = r0
  regs=40 stack=0 before 22: (27) r6 *= 8192
  regs=40 stack=0 before 21: (77) r6 >>= 10
  regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
  parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  last_idx 18 first_idx 9
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  regs=40 stack=0 before 10: (b7) r6 = 0
  25: (79) r3 = *(u64 *)(r0 +0)         ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  26: (7b) *(u64 *)(r1 +0) = r3         ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  27: (95) exit

  from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 11
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff8ad3886c2a00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1
  frame 0: propagating r6
  last_idx 19 first_idx 11
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff8ad3886c2a00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
  last_idx 9 first_idx 9
  regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=0 R10=fp0
  last_idx 8 first_idx 0
  regs=40 stack=0 before 8: (b7) r9 = 0
  regs=40 stack=0 before 7: (97) r6 %= 1
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=40 stack=0 before 5: (05) goto pc+0
  regs=40 stack=0 before 4: (97) r6 %= 1025
  regs=40 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  19: safe
  frame 0: propagating r6
  last_idx 9 first_idx 0
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=40 stack=0 before 5: (05) goto pc+0
  regs=40 stack=0 before 4: (97) r6 %= 1025
  regs=40 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024

  from 6 to 9: safe
  verification time 110 usec
  stack depth 4
  processed 36 insns (limit 1000000) max_states_per_insn 0 total_states 3 peak_states 3 mark_read 2

The verifier considers this program as safe by mistakenly pruning unsafe
code paths. In the above func#0, code lines 0-10 are of interest. In line
0-3 registers r6 to r9 are initialized with known scalar values. In line 4
the register r6 is reset to an unknown scalar given the verifier does not
track modulo operations. Due to this, the verifier can also not determine
precisely which branches in line 6 and 9 are taken, therefore it needs to
explore them both.

As can be seen, the verifier starts with exploring the false/fall-through
paths first. The 'from 19 to 21' path has both r6=0 and r9=0 and the pointer
arithmetic on r0 += r6 is therefore considered safe. Given the arithmetic,
r6 is correctly marked for precision tracking where backtracking kicks in
where it walks back the current path all the way where r6 was set to 0 in
the fall-through branch.

Next, the pruning logics pops the path 'from 9 to 11' from the stack. Also
here, the state of the registers is the same, that is, r6=0 and r9=0, so
that at line 19 the path can be pruned as it is considered safe. It is
interesting to note that the conditional in line 9 turned r6 into a more
precise state, that is, in the fall-through path at the beginning of line
10, it is R6=scalar(umin=1), and in the branch-taken path (which is analyzed
here) at the beginning of line 11, r6 turned into a known const r6=0 as
r9=0 prior to that and therefore (unsigned) r6 <= 0 concludes that r6 must
be 0 (**):

  [...]                                 ; R6_w=scalar()
  9: (bd) if r6 <= r9 goto pc+1         ; R6=scalar(umin=1) R9=0
  [...]

  from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
  [...]

The next path is 'from 6 to 9'. The verifier considers the old and current
state equivalent, and therefore prunes the search incorrectly. Looking into
the two states which are being compared by the pruning logic at line 9, the
old state consists of R6_rwD=Pscalar() R9_rwD=0 R10=fp0 and the new state
consists of R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968)
R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0. While r6 had the reg->precise flag
correctly set in the old state, r9 did not. Both r6'es are considered as
equivalent given the old one is a superset of the current, more precise one,
however, r9's actual values (0 vs 0x80000000) mismatch. Given the old r9
did not have reg->precise flag set, the verifier does not consider the
register as contributing to the precision state of r6, and therefore it
considered both r9 states as equivalent. However, for this specific pruned
path (which is also the actual path taken at runtime), register r6 will be
0x400 and r9 0x80000000 when reaching line 21, thus oob-accessing the map.

The purpose of precision tracking is to initially mark registers (including
spilled ones) as imprecise to help verifier's pruning logic finding equivalent
states it can then prune if they don't contribute to the program's safety
aspects. For example, if registers are used for pointer arithmetic or to pass
constant length to a helper, then the verifier sets reg->precise flag and
backtracks the BPF program instruction sequence and chain of verifier states
to ensure that the given register or stack slot including their dependencies
are marked as precisely tracked scalar. This also includes any other registers
and slots that contribute to a tracked state of given registers/stack slot.
This backtracking relies on recorded jmp_history and is able to traverse
entire chain of parent states. This process ends only when all the necessary
registers/slots and their transitive dependencies are marked as precise.

The backtrack_insn() is called from the current instruction up to the first
instruction, and its purpose is to compute a bitmask of registers and stack
slots that need precision tracking in the parent's verifier state. For example,
if a current instruction is r6 = r7, then r6 needs precision after this
instruction and r7 needs precision before this instruction, that is, in the
parent state. Hence for the latter r7 is marked and r6 unmarked.

For the class of jmp/jmp32 instructions, backtrack_insn() today only looks
at call and exit instructions and for all other conditionals the masks
remain as-is. However, in the given situation register r6 has a dependency
on r9 (as described above in **), so also that one needs to be marked for
precision tracking. In other words, if an imprecise register influences a
precise one, then the imprecise register should also be marked precise.
Meaning, in the parent state both dest and src register need to be tracked
for precision and therefore the marking must be more conservative by setting
reg->precise flag for both. The precision propagation needs to cover both
for the conditional: if the src reg was marked but not the dst reg and vice
versa.

After the fix the program is correctly rejected:

  func#0 @0
  0: R1=ctx(off=0,imm=0) R10=fp0
  0: (b7) r6 = 1024                     ; R6_w=1024
  1: (b7) r7 = 0                        ; R7_w=0
  2: (b7) r8 = 0                        ; R8_w=0
  3: (b7) r9 = -2147483648              ; R9_w=-2147483648
  4: (97) r6 %= 1025                    ; R6_w=scalar()
  5: (05) goto pc+0
  6: (bd) if r6 <= r9 goto pc+2         ; R6_w=scalar(umin=18446744071562067969,var_off=(0xffffffff80000000; 0x7fffffff),u32_min=-2147483648) R9_w=-2147483648
  7: (97) r6 %= 1                       ; R6_w=scalar()
  8: (b7) r9 = 0                        ; R9=0
  9: (bd) if r6 <= r9 goto pc+1         ; R6=scalar(umin=1) R9=0
  10: (b7) r6 = 0                       ; R6_w=0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 9
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff9290dc5bfe00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1   ; R0=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0)
  19: (55) if r0 != 0x0 goto pc+1       ; R0=0
  20: (95) exit

  from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  21: (77) r6 >>= 10                    ; R6_w=0
  22: (27) r6 *= 8192                   ; R6_w=0
  23: (bf) r1 = r0                      ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
  24: (0f) r0 += r6
  last_idx 24 first_idx 19
  regs=40 stack=0 before 23: (bf) r1 = r0
  regs=40 stack=0 before 22: (27) r6 *= 8192
  regs=40 stack=0 before 21: (77) r6 >>= 10
  regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
  parent didn't have regs=40 stack=0 marks: R0_rw=map_value_or_null(id=1,off=0,ks=4,vs=48,imm=0) R6_rw=P0 R7=0 R8=0 R9=0 R10=fp0 fp-8=mmmm????
  last_idx 18 first_idx 9
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  regs=40 stack=0 before 10: (b7) r6 = 0
  25: (79) r3 = *(u64 *)(r0 +0)         ; R0_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  26: (7b) *(u64 *)(r1 +0) = r3         ; R1_w=map_value(off=0,ks=4,vs=48,imm=0) R3_w=scalar()
  27: (95) exit

  from 9 to 11: R1=ctx(off=0,imm=0) R6=0 R7=0 R8=0 R9=0 R10=fp0
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 11
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff9290dc5bfe00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1
  frame 0: propagating r6
  last_idx 19 first_idx 11
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_r=P0 R7=0 R8=0 R9=0 R10=fp0
  last_idx 9 first_idx 9
  regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
  parent didn't have regs=240 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar() R7_w=0 R8_w=0 R9_rw=P0 R10=fp0
  last_idx 8 first_idx 0
  regs=240 stack=0 before 8: (b7) r9 = 0
  regs=40 stack=0 before 7: (97) r6 %= 1
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  19: safe

  from 6 to 9: R1=ctx(off=0,imm=0) R6_w=scalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
  9: (bd) if r6 <= r9 goto pc+1
  last_idx 9 first_idx 0
  regs=40 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  last_idx 9 first_idx 0
  regs=200 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  11: R6=scalar(umax=18446744071562067968) R9=-2147483648
  11: (b7) r0 = 0                       ; R0_w=0
  12: (63) *(u32 *)(r10 -4) = r0
  last_idx 12 first_idx 11
  regs=1 stack=0 before 11: (b7) r0 = 0
  13: R0_w=0 R10=fp0 fp-8=0000????
  13: (18) r4 = 0xffff9290dc5bfe00      ; R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  15: (bf) r1 = r4                      ; R1_w=map_ptr(off=0,ks=4,vs=48,imm=0) R4_w=map_ptr(off=0,ks=4,vs=48,imm=0)
  16: (bf) r2 = r10                     ; R2_w=fp0 R10=fp0
  17: (07) r2 += -4                     ; R2_w=fp-4
  18: (85) call bpf_map_lookup_elem#1   ; R0_w=map_value_or_null(id=3,off=0,ks=4,vs=48,imm=0)
  19: (55) if r0 != 0x0 goto pc+1       ; R0_w=0
  20: (95) exit

  from 19 to 21: R0=map_value(off=0,ks=4,vs=48,imm=0) R6=scalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
  21: (77) r6 >>= 10                    ; R6_w=scalar(umax=18014398507384832,var_off=(0x0; 0x3fffffffffffff))
  22: (27) r6 *= 8192                   ; R6_w=scalar(smax=9223372036854767616,umax=18446744073709543424,var_off=(0x0; 0xffffffffffffe000),s32_max=2147475456,u32_max=-8192)
  23: (bf) r1 = r0                      ; R0=map_value(off=0,ks=4,vs=48,imm=0) R1_w=map_value(off=0,ks=4,vs=48,imm=0)
  24: (0f) r0 += r6
  last_idx 24 first_idx 21
  regs=40 stack=0 before 23: (bf) r1 = r0
  regs=40 stack=0 before 22: (27) r6 *= 8192
  regs=40 stack=0 before 21: (77) r6 >>= 10
  parent didn't have regs=40 stack=0 marks: R0_rw=map_value(off=0,ks=4,vs=48,imm=0) R6_r=Pscalar(umax=18446744071562067968) R7=0 R8=0 R9=-2147483648 R10=fp0 fp-8=mmmm????
  last_idx 19 first_idx 11
  regs=40 stack=0 before 19: (55) if r0 != 0x0 goto pc+1
  regs=40 stack=0 before 18: (85) call bpf_map_lookup_elem#1
  regs=40 stack=0 before 17: (07) r2 += -4
  regs=40 stack=0 before 16: (bf) r2 = r10
  regs=40 stack=0 before 15: (bf) r1 = r4
  regs=40 stack=0 before 13: (18) r4 = 0xffff9290dc5bfe00
  regs=40 stack=0 before 12: (63) *(u32 *)(r10 -4) = r0
  regs=40 stack=0 before 11: (b7) r0 = 0
  parent didn't have regs=40 stack=0 marks: R1=ctx(off=0,imm=0) R6_rw=Pscalar(umax=18446744071562067968) R7_w=0 R8_w=0 R9_w=-2147483648 R10=fp0
  last_idx 9 first_idx 0
  regs=40 stack=0 before 9: (bd) if r6 <= r9 goto pc+1
  regs=240 stack=0 before 6: (bd) if r6 <= r9 goto pc+2
  regs=240 stack=0 before 5: (05) goto pc+0
  regs=240 stack=0 before 4: (97) r6 %= 1025
  regs=240 stack=0 before 3: (b7) r9 = -2147483648
  regs=40 stack=0 before 2: (b7) r8 = 0
  regs=40 stack=0 before 1: (b7) r7 = 0
  regs=40 stack=0 before 0: (b7) r6 = 1024
  math between map_value pointer and register with unbounded min value is not allowed
  verification time 886 usec
  stack depth 4
  processed 49 insns (limit 1000000) max_states_per_insn 1 total_states 5 peak_states 5 mark_read 2

Fixes: b5dc0163d8 ("bpf: precise scalar_value tracking")
Reported-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reported-by: Meador Inge <meadori@google.com>
Reported-by: Simon Scannell <simonscannell@google.com>
Reported-by: Nenad Stojanovski <thenenadx@google.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Co-developed-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Reviewed-by: Juan Jose Lopez Jaimez <jjlopezjaimez@google.com>
Reviewed-by: Meador Inge <meadori@google.com>
Reviewed-by: Simon Scannell <simonscannell@google.com>
2023-04-19 10:18:18 -07:00
Eduard Zingerman
6715df8d5d bpf: Allow reads from uninit stack
This commits updates the following functions to allow reads from
uninitialized stack locations when env->allow_uninit_stack option is
enabled:
- check_stack_read_fixed_off()
- check_stack_range_initialized(), called from:
  - check_stack_read_var_off()
  - check_helper_mem_access()

Such change allows to relax logic in stacksafe() to treat STACK_MISC
and STACK_INVALID in a same way and make the following stack slot
configurations equivalent:

  |  Cached state    |  Current state   |
  |   stack slot     |   stack slot     |
  |------------------+------------------|
  | STACK_INVALID or | STACK_INVALID or |
  | STACK_MISC       | STACK_SPILL   or |
  |                  | STACK_MISC    or |
  |                  | STACK_ZERO    or |
  |                  | STACK_DYNPTR     |

This leads to significant verification speed gains (see below).

The idea was suggested by Andrii Nakryiko [1] and initial patch was
created by Alexei Starovoitov [2].

Currently the env->allow_uninit_stack is allowed for programs loaded
by users with CAP_PERFMON or CAP_SYS_ADMIN capabilities.

A number of test cases from verifier/*.c were expecting uninitialized
stack access to be an error. These test cases were updated to execute
in unprivileged mode (thus preserving the tests).

The test progs/test_global_func10.c expected "invalid indirect read
from stack" error message because of the access to uninitialized
memory region. This error is no longer possible in privileged mode.
The test is updated to provoke an error "invalid indirect access to
stack" because of access to invalid stack address (such error is not
verified by progs/test_global_func*.c series of tests).

The following tests had to be removed because these can't be made
unprivileged:
- verifier/sock.c:
  - "sk_storage_get(map, skb->sk, &stack_value, 1): partially init
  stack_value"
  BPF_PROG_TYPE_SCHED_CLS programs are not executed in unprivileged mode.
- verifier/var_off.c:
  - "indirect variable-offset stack access, max_off+size > max_initialized"
  - "indirect variable-offset stack access, uninitialized"
  These tests verify that access to uninitialized stack values is
  detected when stack offset is not a constant. However, variable
  stack access is prohibited in unprivileged mode, thus these tests
  are no longer valid.

 * * *

Here is veristat log comparing this patch with current master on a
set of selftest binaries listed in tools/testing/selftests/bpf/veristat.cfg
and cilium BPF binaries (see [3]):

$ ./veristat -e file,prog,states -C -f 'states_pct<-30' master.log current.log
File                        Program                     States (A)  States (B)  States    (DIFF)
--------------------------  --------------------------  ----------  ----------  ----------------
bpf_host.o                  tail_handle_ipv6_from_host         349         244    -105 (-30.09%)
bpf_host.o                  tail_handle_nat_fwd_ipv4          1320         895    -425 (-32.20%)
bpf_lxc.o                   tail_handle_nat_fwd_ipv4          1320         895    -425 (-32.20%)
bpf_sock.o                  cil_sock4_connect                   70          48     -22 (-31.43%)
bpf_sock.o                  cil_sock4_sendmsg                   68          46     -22 (-32.35%)
bpf_xdp.o                   tail_handle_nat_fwd_ipv4          1554         803    -751 (-48.33%)
bpf_xdp.o                   tail_lb_ipv4                      6457        2473   -3984 (-61.70%)
bpf_xdp.o                   tail_lb_ipv6                      7249        3908   -3341 (-46.09%)
pyperf600_bpf_loop.bpf.o    on_event                           287         145    -142 (-49.48%)
strobemeta.bpf.o            on_event                         15915        4772  -11143 (-70.02%)
strobemeta_nounroll2.bpf.o  on_event                         17087        3820  -13267 (-77.64%)
xdp_synproxy_kern.bpf.o     syncookie_tc                     21271        6635  -14636 (-68.81%)
xdp_synproxy_kern.bpf.o     syncookie_xdp                    23122        6024  -17098 (-73.95%)
--------------------------  --------------------------  ----------  ----------  ----------------

Note: I limited selection by states_pct<-30%.

Inspection of differences in pyperf600_bpf_loop behavior shows that
the following patch for the test removes almost all differences:

    - a/tools/testing/selftests/bpf/progs/pyperf.h
    + b/tools/testing/selftests/bpf/progs/pyperf.h
    @ -266,8 +266,8 @ int __on_event(struct bpf_raw_tracepoint_args *ctx)
            }

            if (event->pthread_match || !pidData->use_tls) {
    -               void* frame_ptr;
    -               FrameData frame;
    +               void* frame_ptr = 0;
    +               FrameData frame = {};
                    Symbol sym = {};
                    int cur_cpu = bpf_get_smp_processor_id();

W/o this patch the difference comes from the following pattern
(for different variables):

    static bool get_frame_data(... FrameData *frame ...)
    {
        ...
        bpf_probe_read_user(&frame->f_code, ...);
        if (!frame->f_code)
            return false;
        ...
        bpf_probe_read_user(&frame->co_name, ...);
        if (frame->co_name)
            ...;
    }

    int __on_event(struct bpf_raw_tracepoint_args *ctx)
    {
        FrameData frame;
        ...
        get_frame_data(... &frame ...) // indirectly via a bpf_loop & callback
        ...
    }

    SEC("raw_tracepoint/kfree_skb")
    int on_event(struct bpf_raw_tracepoint_args* ctx)
    {
        ...
        ret |= __on_event(ctx);
        ret |= __on_event(ctx);
        ...
    }

With regards to value `frame->co_name` the following is important:
- Because of the conditional `if (!frame->f_code)` each call to
  __on_event() produces two states, one with `frame->co_name` marked
  as STACK_MISC, another with it as is (and marked STACK_INVALID on a
  first call).
- The call to bpf_probe_read_user() does not mark stack slots
  corresponding to `&frame->co_name` as REG_LIVE_WRITTEN but it marks
  these slots as BPF_MISC, this happens because of the following loop
  in the check_helper_call():

	for (i = 0; i < meta.access_size; i++) {
		err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
				       BPF_WRITE, -1, false);
		if (err)
			return err;
	}

  Note the size of the write, it is a one byte write for each byte
  touched by a helper. The BPF_B write does not lead to write marks
  for the target stack slot.
- Which means that w/o this patch when second __on_event() call is
  verified `if (frame->co_name)` will propagate read marks first to a
  stack slot with STACK_MISC marks and second to a stack slot with
  STACK_INVALID marks and these states would be considered different.

[1] https://lore.kernel.org/bpf/CAEf4BzY3e+ZuC6HUa8dCiUovQRg2SzEk7M-dSkqNZyn=xEmnPA@mail.gmail.com/
[2] https://lore.kernel.org/bpf/CAADnVQKs2i1iuZ5SUGuJtxWVfGYR9kDgYKhq3rNV+kBLQCu7rA@mail.gmail.com/
[3] git@github.com:anakryiko/cilium.git

Suggested-by: Andrii Nakryiko <andrii@kernel.org>
Co-developed-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230219200427.606541-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-22 12:34:50 -08:00
Eduard Zingerman
31ff213512 bpf: BPF_ST with variable offset should preserve STACK_ZERO marks
BPF_STX instruction preserves STACK_ZERO marks for variable offset
writes in situations like below:

  *(u64*)(r10 - 8) = 0   ; STACK_ZERO marks for fp[-8]
  r0 = random(-7, -1)    ; some random number in range of [-7, -1]
  r0 += r10              ; r0 is now a variable offset pointer to stack
  r1 = 0
  *(u8*)(r0) = r1        ; BPF_STX writing zero, STACK_ZERO mark for
                         ; fp[-8] is preserved

This commit updates verifier.c:check_stack_write_var_off() to process
BPF_ST in a similar manner, e.g. the following example:

  *(u64*)(r10 - 8) = 0   ; STACK_ZERO marks for fp[-8]
  r0 = random(-7, -1)    ; some random number in range of [-7, -1]
  r0 += r10              ; r0 is now variable offset pointer to stack
  *(u8*)(r0) = 0         ; BPF_ST writing zero, STACK_ZERO mark for
                         ; fp[-8] is preserved

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-4-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-15 11:48:47 -08:00
Eduard Zingerman
ecdf985d76 bpf: track immediate values written to stack by BPF_ST instruction
For aligned stack writes using BPF_ST instruction track stored values
in a same way BPF_STX is handled, e.g. make sure that the following
commands produce similar verifier knowledge:

  fp[-8] = 42;             r1 = 42;
                       fp[-8] = r1;

This covers two cases:
 - non-null values written to stack are stored as spill of fake
   registers;
 - null values written to stack are stored as STACK_ZERO marks.

Previously both cases above used STACK_MISC marks instead.

Some verifier test cases relied on the old logic to obtain STACK_MISC
marks for some stack values. These test cases are updated in the same
commit to avoid failures during bisect.

Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230214232030.1502829-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-15 11:48:47 -08:00
Dave Marchevsky
a40d363243 bpf: Special verifier handling for bpf_rbtree_{remove, first}
Newly-added bpf_rbtree_{remove,first} kfuncs have some special properties
that require handling in the verifier:

  * both bpf_rbtree_remove and bpf_rbtree_first return the type containing
    the bpf_rb_node field, with the offset set to that field's offset,
    instead of a struct bpf_rb_node *
    * mark_reg_graph_node helper added in previous patch generalizes
      this logic, use it

  * bpf_rbtree_remove's node input is a node that's been inserted
    in the tree - a non-owning reference.

  * bpf_rbtree_remove must invalidate non-owning references in order to
    avoid aliasing issue. Use previously-added
    invalidate_non_owning_refs helper to mark this function as a
    non-owning ref invalidation point.

  * Unlike other functions, which convert one of their input arg regs to
    non-owning reference, bpf_rbtree_first takes no arguments and just
    returns a non-owning reference (possibly null)
    * For now verifier logic for this is special-cased instead of
      adding new kfunc flag.

This patch, along with the previous one, complete special verifier
handling for all rbtree API functions added in this series.

With functional verifier handling of rbtree_remove, under current
non-owning reference scheme, a node type with both bpf_{list,rb}_node
fields could cause the verifier to accept programs which remove such
nodes from collections they haven't been added to.

In order to prevent this, this patch adds a check to btf_parse_fields
which rejects structs with both bpf_{list,rb}_node fields. This is a
temporary measure that can be removed after "collection identity"
followup. See comment added in btf_parse_fields. A linked_list BTF test
exercising the new check is added in this patch as well.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-6-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:40:53 -08:00
Dave Marchevsky
5d92ddc3de bpf: Add callback validation to kfunc verifier logic
Some BPF helpers take a callback function which the helper calls. For
each helper that takes such a callback, there's a special call to
__check_func_call with a callback-state-setting callback that sets up
verifier bpf_func_state for the callback's frame.

kfuncs don't have any of this infrastructure yet, so let's add it in
this patch, following existing helper pattern as much as possible. To
validate functionality of this added plumbing, this patch adds
callback handling for the bpf_rbtree_add kfunc and hopes to lay
groundwork for future graph datastructure callbacks.

In the "general plumbing" category we have:

  * check_kfunc_call doing callback verification right before clearing
    CALLER_SAVED_REGS, exactly like check_helper_call
  * recognition of func_ptr BTF types in kfunc args as
    KF_ARG_PTR_TO_CALLBACK + propagation of subprogno for this arg type

In the "rbtree_add / graph datastructure-specific plumbing" category:

  * Since bpf_rbtree_add must be called while the spin_lock associated
    with the tree is held, don't complain when callback's func_state
    doesn't unlock it by frame exit
  * Mark rbtree_add callback's args with ref_set_non_owning
    to prevent rbtree api functions from being called in the callback.
    Semantically this makes sense, as less() takes no ownership of its
    args when determining which comes first.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:40:53 -08:00
Dave Marchevsky
cd6791b4b6 bpf: Add support for bpf_rb_root and bpf_rb_node in kfunc args
Now that we find bpf_rb_root and bpf_rb_node in structs, let's give args
that contain those types special classification and properly handle
these types when checking kfunc args.

"Properly handling" these types largely requires generalizing similar
handling for bpf_list_{head,node}, with little new logic added in this
patch.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-4-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:40:53 -08:00
Dave Marchevsky
bd1279ae8a bpf: Add bpf_rbtree_{add,remove,first} kfuncs
This patch adds implementations of bpf_rbtree_{add,remove,first}
and teaches verifier about their BTF_IDs as well as those of
bpf_rb_{root,node}.

All three kfuncs have some nonstandard component to their verification
that needs to be addressed in future patches before programs can
properly use them:

  * bpf_rbtree_add:     Takes 'less' callback, need to verify it

  * bpf_rbtree_first:   Returns ptr_to_node_type(off=rb_node_off) instead
                        of ptr_to_rb_node(off=0). Return value ref is
			non-owning.

  * bpf_rbtree_remove:  Returns ptr_to_node_type(off=rb_node_off) instead
                        of ptr_to_rb_node(off=0). 2nd arg (node) is a
			non-owning reference.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:40:48 -08:00
Dave Marchevsky
9c395c1b99 bpf: Add basic bpf_rb_{root,node} support
This patch adds special BPF_RB_{ROOT,NODE} btf_field_types similar to
BPF_LIST_{HEAD,NODE}, adds the necessary plumbing to detect the new
types, and adds bpf_rb_root_free function for freeing bpf_rb_root in
map_values.

structs bpf_rb_root and bpf_rb_node are opaque types meant to
obscure structs rb_root_cached rb_node, respectively.

btf_struct_access will prevent BPF programs from touching these special
fields automatically now that they're recognized.

btf_check_and_fixup_fields now groups list_head and rb_root together as
"graph root" fields and {list,rb}_node as "graph node", and does same
ownership cycle checking as before. Note that this function does _not_
prevent ownership type mixups (e.g. rb_root owning list_node) - that's
handled by btf_parse_graph_root.

After this patch, a bpf program can have a struct bpf_rb_root in a
map_value, but not add anything to nor do anything useful with it.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230214004017.2534011-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 19:31:13 -08:00
Dave Marchevsky
6a3cd3318f bpf: Migrate release_on_unlock logic to non-owning ref semantics
This patch introduces non-owning reference semantics to the verifier,
specifically linked_list API kfunc handling. release_on_unlock logic for
refs is refactored - with small functional changes - to implement these
semantics, and bpf_list_push_{front,back} are migrated to use them.

When a list node is pushed to a list, the program still has a pointer to
the node:

  n = bpf_obj_new(typeof(*n));

  bpf_spin_lock(&l);
  bpf_list_push_back(&l, n);
  /* n still points to the just-added node */
  bpf_spin_unlock(&l);

What the verifier considers n to be after the push, and thus what can be
done with n, are changed by this patch.

Common properties both before/after this patch:
  * After push, n is only a valid reference to the node until end of
    critical section
  * After push, n cannot be pushed to any list
  * After push, the program can read the node's fields using n

Before:
  * After push, n retains the ref_obj_id which it received on
    bpf_obj_new, but the associated bpf_reference_state's
    release_on_unlock field is set to true
    * release_on_unlock field and associated logic is used to implement
      "n is only a valid ref until end of critical section"
  * After push, n cannot be written to, the node must be removed from
    the list before writing to its fields
  * After push, n is marked PTR_UNTRUSTED

After:
  * After push, n's ref is released and ref_obj_id set to 0. NON_OWN_REF
    type flag is added to reg's type, indicating that it's a non-owning
    reference.
    * NON_OWN_REF flag and logic is used to implement "n is only a
      valid ref until end of critical section"
  * n can be written to (except for special fields e.g. bpf_list_node,
    timer, ...)

Summary of specific implementation changes to achieve the above:

  * release_on_unlock field, ref_set_release_on_unlock helper, and logic
    to "release on unlock" based on that field are removed

  * The anonymous active_lock struct used by bpf_verifier_state is
    pulled out into a named struct bpf_active_lock.

  * NON_OWN_REF type flag is introduced along with verifier logic
    changes to handle non-owning refs

  * Helpers are added to use NON_OWN_REF flag to implement non-owning
    ref semantics as described above
    * invalidate_non_owning_refs - helper to clobber all non-owning refs
      matching a particular bpf_active_lock identity. Replaces
      release_on_unlock logic in process_spin_lock.
    * ref_set_non_owning - set NON_OWN_REF type flag after doing some
      sanity checking
    * ref_convert_owning_non_owning - convert owning reference w/
      specified ref_obj_id to non-owning references. Set NON_OWN_REF
      flag for each reg with that ref_obj_id and 0-out its ref_obj_id

  * Update linked_list selftests to account for minor semantic
    differences introduced by this patch
    * Writes to a release_on_unlock node ref are not allowed, while
      writes to non-owning reference pointees are. As a result the
      linked_list "write after push" failure tests are no longer scenarios
      that should fail.
    * The test##missing_lock##op and test##incorrect_lock##op
      macro-generated failure tests need to have a valid node argument in
      order to have the same error output as before. Otherwise
      verification will fail early and the expected error output won't be seen.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230212092715.1422619-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-02-13 13:37:37 -08:00
Jakub Kicinski
82b4a9412b Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
net/core/gro.c
  7d2c89b325 ("skb: Do mix page pool and page referenced frags in GRO")
  b1a78b9b98 ("net: add support for ipv4 big tcp")
https://lore.kernel.org/all/20230203094454.5766f160@canb.auug.org.au/

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-02-02 14:49:55 -08:00
Jakub Kicinski
2d104c390f Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:

====================
bpf-next 2023-01-28

We've added 124 non-merge commits during the last 22 day(s) which contain
a total of 124 files changed, 6386 insertions(+), 1827 deletions(-).

The main changes are:

1) Implement XDP hints via kfuncs with initial support for RX hash and
   timestamp metadata kfuncs, from Stanislav Fomichev and
   Toke Høiland-Jørgensen.
   Measurements on overhead: https://lore.kernel.org/bpf/875yellcx6.fsf@toke.dk

2) Extend libbpf's bpf_tracing.h support for tracing arguments of
   kprobes/uprobes and syscall as a special case, from Andrii Nakryiko.

3) Significantly reduce the search time for module symbols by livepatch
   and BPF, from Jiri Olsa and Zhen Lei.

4) Enable cpumasks to be used as kptrs, which is useful for tracing
   programs tracking which tasks end up running on which CPUs
   in different time intervals, from David Vernet.

5) Fix several issues in the dynptr processing such as stack slot liveness
   propagation, missing checks for PTR_TO_STACK variable offset, etc,
   from Kumar Kartikeya Dwivedi.

6) Various performance improvements, fixes, and introduction of more
   than just one XDP program to XSK selftests, from Magnus Karlsson.

7) Big batch to BPF samples to reduce deprecated functionality,
   from Daniel T. Lee.

8) Enable struct_ops programs to be sleepable in verifier,
   from David Vernet.

9) Reduce pr_warn() noise on BTF mismatches when they are expected under
   the CONFIG_MODULE_ALLOW_BTF_MISMATCH config anyway, from Connor O'Brien.

10) Describe modulo and division by zero behavior of the BPF runtime
    in BPF's instruction specification document, from Dave Thaler.

11) Several improvements to libbpf API documentation in libbpf.h,
    from Grant Seltzer.

12) Improve resolve_btfids header dependencies related to subcmd and add
    proper support for HOSTCC, from Ian Rogers.

13) Add ipip6 and ip6ip decapsulation support for bpf_skb_adjust_room()
    helper along with BPF selftests, from Ziyang Xuan.

14) Simplify the parsing logic of structure parameters for BPF trampoline
    in the x86-64 JIT compiler, from Pu Lehui.

15) Get BTF working for kernels with CONFIG_RUST enabled by excluding
    Rust compilation units with pahole, from Martin Rodriguez Reboredo.

16) Get bpf_setsockopt() working for kTLS on top of TCP sockets,
    from Kui-Feng Lee.

17) Disable stack protection for BPF objects in bpftool given BPF backends
    don't support it, from Holger Hoffstätte.

* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (124 commits)
  selftest/bpf: Make crashes more debuggable in test_progs
  libbpf: Add documentation to map pinning API functions
  libbpf: Fix malformed documentation formatting
  selftests/bpf: Properly enable hwtstamp in xdp_hw_metadata
  selftests/bpf: Calls bpf_setsockopt() on a ktls enabled socket.
  bpf: Check the protocol of a sock to agree the calls to bpf_setsockopt().
  bpf/selftests: Verify struct_ops prog sleepable behavior
  bpf: Pass const struct bpf_prog * to .check_member
  libbpf: Support sleepable struct_ops.s section
  bpf: Allow BPF_PROG_TYPE_STRUCT_OPS programs to be sleepable
  selftests/bpf: Fix vmtest static compilation error
  tools/resolve_btfids: Alter how HOSTCC is forced
  tools/resolve_btfids: Install subcmd headers
  bpf/docs: Document the nocast aliasing behavior of ___init
  bpf/docs: Document how nested trusted fields may be defined
  bpf/docs: Document cpumask kfuncs in a new file
  selftests/bpf: Add selftest suite for cpumask kfuncs
  selftests/bpf: Add nested trust selftests suite
  bpf: Enable cpumasks to be queried and used as kptrs
  bpf: Disallow NULLable pointers for trusted kfuncs
  ...
====================

Link: https://lore.kernel.org/r/20230128004827.21371-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-28 00:00:14 -08:00
David Vernet
51a52a29eb bpf: Pass const struct bpf_prog * to .check_member
The .check_member field of struct bpf_struct_ops is currently passed the
member's btf_type via const struct btf_type *t, and a const struct
btf_member *member. This allows the struct_ops implementation to check
whether e.g. an ops is supported, but it would be useful to also enforce
that the struct_ops prog being loaded for that member has other
qualities, like being sleepable (or not). This patch therefore updates
the .check_member() callback to also take a const struct bpf_prog *prog
argument.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-4-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-25 10:25:57 -08:00
David Vernet
1e12d3ef47 bpf: Allow BPF_PROG_TYPE_STRUCT_OPS programs to be sleepable
BPF struct_ops programs currently cannot be marked as sleepable. This
need not be the case -- struct_ops programs can be sleepable, and e.g.
invoke kfuncs that export the KF_SLEEPABLE flag. So as to allow future
struct_ops programs to invoke such kfuncs, this patch updates the
verifier to allow struct_ops programs to be sleepable. A follow-on patch
will add support to libbpf for specifying struct_ops.s as a sleepable
struct_ops program, and then another patch will add testcases to the
dummy_st_ops selftest suite which test sleepable struct_ops behavior.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125164735.785732-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-25 10:25:57 -08:00
David Vernet
caf713c338 bpf: Disallow NULLable pointers for trusted kfuncs
KF_TRUSTED_ARGS kfuncs currently have a subtle and insidious bug in
validating pointers to scalars. Say that you have a kfunc like the
following, which takes an array as the first argument:

bool bpf_cpumask_empty(const struct cpumask *cpumask)
{
	return cpumask_empty(cpumask);
}

...
BTF_ID_FLAGS(func, bpf_cpumask_empty, KF_TRUSTED_ARGS)
...

If a BPF program were to invoke the kfunc with a NULL argument, it would
crash the kernel. The reason is that struct cpumask is defined as a
bitmap, which is itself defined as an array, and is accessed as a memory
address by bitmap operations. So when the verifier analyzes the
register, it interprets it as a pointer to a scalar struct, which is an
array of size 8. check_mem_reg() then sees that the register is NULL and
returns 0, and the kfunc crashes when it passes it down to the cpumask
wrappers.

To fix this, this patch adds a check for KF_ARG_PTR_TO_MEM which
verifies that the register doesn't contain a possibly-NULL pointer if
the kfunc is KF_TRUSTED_ARGS.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230125143816.721952-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-25 07:57:49 -08:00
David Vernet
b613d335a7 bpf: Allow trusted args to walk struct when checking BTF IDs
When validating BTF types for KF_TRUSTED_ARGS kfuncs, the verifier
currently enforces that the top-level type must match when calling
the kfunc. In other words, the verifier does not allow the BPF program
to pass a bitwise equivalent struct, despite it being allowed according
to the C standard.

For example, if you have the following type:

struct  nf_conn___init {
	struct nf_conn ct;
};

The C standard stipulates that it would be safe to pass a struct
nf_conn___init to a kfunc expecting a struct nf_conn. The verifier
currently disallows this, however, as semantically kfuncs may want to
enforce that structs that have equivalent types according to the C
standard, but have different BTF IDs, are not able to be passed to
kfuncs expecting one or the other. For example, struct nf_conn___init
may not be queried / looked up, as it is allocated but may not yet be
fully initialized.

On the other hand, being able to pass types that are equivalent
according to the C standard will be useful for other types of kfunc /
kptrs enabled by BPF.  For example, in a follow-on patch, a series of
kfuncs will be added which allow programs to do bitwise queries on
cpumasks that are either allocated by the program (in which case they'll
be a 'struct bpf_cpumask' type that wraps a cpumask_t as its first
element), or a cpumask that was allocated by the main kernel (in which
case it will just be a straight cpumask_t, as in task->cpus_ptr).

Having the two types of cpumasks allows us to distinguish between the
two for when a cpumask is read-only vs. mutatable. A struct bpf_cpumask
can be mutated by e.g. bpf_cpumask_clear(), whereas a regular cpumask_t
cannot be. On the other hand, a struct bpf_cpumask can of course be
queried in the exact same manner as a cpumask_t, with e.g.
bpf_cpumask_test_cpu().

If we were to enforce that top level types match, then a user that's
passing a struct bpf_cpumask to a read-only cpumask_t argument would
have to cast with something like bpf_cast_to_kern_ctx() (which itself
would need to be updated to expect the alias, and currently it only
accommodates a single alias per prog type). Additionally, not specifying
KF_TRUSTED_ARGS is not an option, as some kfuncs take one argument as a
struct bpf_cpumask *, and another as a struct cpumask *
(i.e. cpumask_t).

In order to enable this, this patch relaxes the constraint that a
KF_TRUSTED_ARGS kfunc must have strict type matching, and instead only
enforces strict type matching if a type is observed to be a "no-cast
alias" (i.e., that the type names are equivalent, but one is suffixed
with ___init).

Additionally, in order to try and be conservative and match existing
behavior / expectations, this patch also enforces strict type checking
for acquire kfuncs. We were already enforcing it for release kfuncs, so
this should also improve the consistency of the semantics for kfuncs.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-3-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-24 20:15:13 -08:00
David Vernet
57539b1c0a bpf: Enable annotating trusted nested pointers
In kfuncs, a "trusted" pointer is a pointer that the kfunc can assume is
safe, and which the verifier will allow to be passed to a
KF_TRUSTED_ARGS kfunc. Currently, a KF_TRUSTED_ARGS kfunc disallows any
pointer to be passed at a nonzero offset, but sometimes this is in fact
safe if the "nested" pointer's lifetime is inherited from its parent.
For example, the const cpumask_t *cpus_ptr field in a struct task_struct
will remain valid until the task itself is destroyed, and thus would
also be safe to pass to a KF_TRUSTED_ARGS kfunc.

While it would be conceptually simple to enable this by using BTF tags,
gcc unfortunately does not yet support this. In the interim, this patch
enables support for this by using a type-naming convention. A new
BTF_TYPE_SAFE_NESTED macro is defined in verifier.c which allows a
developer to specify the nested fields of a type which are considered
trusted if its parent is also trusted. The verifier is also updated to
account for this. A patch with selftests will be added in a follow-on
change, along with documentation for this feature.

Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230120192523.3650503-2-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-24 20:15:01 -08:00
Toke Høiland-Jørgensen
fd7c211d68 bpf: Support consuming XDP HW metadata from fext programs
Instead of rejecting the attaching of PROG_TYPE_EXT programs to XDP
programs that consume HW metadata, implement support for propagating the
offload information. The extension program doesn't need to set a flag or
ifindex, these will just be propagated from the target by the verifier.
We need to create a separate offload object for the extension program,
though, since it can be reattached to a different program later (which
means we can't just inherit the offload information from the target).

An additional check is added on attach that the new target is compatible
with the offload information in the extension prog.

Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-9-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-01-23 09:38:11 -08:00
Stanislav Fomichev
3d76a4d3d4 bpf: XDP metadata RX kfuncs
Define a new kfunc set (xdp_metadata_kfunc_ids) which implements all possible
XDP metatada kfuncs. Not all devices have to implement them. If kfunc is not
supported by the target device, the default implementation is called instead.
The verifier, at load time, replaces a call to the generic kfunc with a call
to the per-device one. Per-device kfunc pointers are stored in separate
struct xdp_metadata_ops.

Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Jakub Kicinski <kuba@kernel.org>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-8-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-01-23 09:38:11 -08:00
Stanislav Fomichev
9d03ebc71a bpf: Rename bpf_{prog,map}_is_dev_bound to is_offloaded
BPF offloading infra will be reused to implement
bound-but-not-offloaded bpf programs. Rename existing
helpers for clarity. No functional changes.

Cc: John Fastabend <john.fastabend@gmail.com>
Cc: David Ahern <dsahern@gmail.com>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Willem de Bruijn <willemb@google.com>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Anatoly Burakov <anatoly.burakov@intel.com>
Cc: Alexander Lobakin <alexandr.lobakin@intel.com>
Cc: Magnus Karlsson <magnus.karlsson@gmail.com>
Cc: Maryam Tahhan <mtahhan@redhat.com>
Cc: xdp-hints@xdp-project.net
Cc: netdev@vger.kernel.org
Reviewed-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/r/20230119221536.3349901-3-sdf@google.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
2023-01-23 09:38:10 -08:00
Kumar Kartikeya Dwivedi
1ee72bcbe4 bpf: Avoid recomputing spi in process_dynptr_func
Currently, process_dynptr_func first calls dynptr_get_spi and then
is_dynptr_reg_valid_init and is_dynptr_reg_valid_uninit have to call it
again to obtain the spi value. Instead of doing this twice, reuse the
already obtained value (which is by default 0, and is only set for
PTR_TO_STACK, and only used in that case in aforementioned functions).
The input value for these two functions will either be -ERANGE or >= 1,
and can either be permitted or rejected based on the respective check.

Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-8-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 17:55:03 -08:00
Kumar Kartikeya Dwivedi
f5b625e5f8 bpf: Combine dynptr_get_spi and is_spi_bounds_valid
Currently, a check on spi resides in dynptr_get_spi, while others
checking its validity for being within the allocated stack slots happens
in is_spi_bounds_valid. Almost always barring a couple of cases (where
being beyond allocated stack slots is not an error as stack slots need
to be populated), both are used together to make checks. Hence, subsume
the is_spi_bounds_valid check in dynptr_get_spi, and return -ERANGE to
specially distinguish the case where spi is valid but not within
allocated slots in the stack state.

The is_spi_bounds_valid function is still kept around as it is a generic
helper that will be useful for other objects on stack similar to dynptr
in the future.

Suggested-by: Joanne Koong <joannelkoong@gmail.com>
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-7-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 17:55:03 -08:00
Kumar Kartikeya Dwivedi
379d4ba831 bpf: Allow reinitializing unreferenced dynptr stack slots
Consider a program like below:

void prog(void)
{
	{
		struct bpf_dynptr ptr;
		bpf_dynptr_from_mem(...);
	}
	...
	{
		struct bpf_dynptr ptr;
		bpf_dynptr_from_mem(...);
	}
}

Here, the C compiler based on lifetime rules in the C standard would be
well within in its rights to share stack storage for dynptr 'ptr' as
their lifetimes do not overlap in the two distinct scopes. Currently,
such an example would be rejected by the verifier, but this is too
strict. Instead, we should allow reinitializing over dynptr stack slots
and forget information about the old dynptr object.

The destroy_if_dynptr_stack_slot function already makes necessary checks
to avoid overwriting referenced dynptr slots. This is done to present a
better error message instead of forgetting dynptr information on stack
and preserving reference state, leading to an inevitable but
undecipherable error at the end about an unreleased reference which has
to be associated back to its allocating call instruction to make any
sense to the user.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-6-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 17:55:03 -08:00
Kumar Kartikeya Dwivedi
f8064ab90d bpf: Invalidate slices on destruction of dynptrs on stack
The previous commit implemented destroy_if_dynptr_stack_slot. It
destroys the dynptr which given spi belongs to, but still doesn't
invalidate the slices that belong to such a dynptr. While for the case
of referenced dynptr, we don't allow their overwrite and return an error
early, we still allow it and destroy the dynptr for unreferenced dynptr.

To be able to enable precise and scoped invalidation of dynptr slices in
this case, we must be able to associate the source dynptr of slices that
have been obtained using bpf_dynptr_data. When doing destruction, only
slices belonging to the dynptr being destructed should be invalidated,
and nothing else. Currently, dynptr slices belonging to different
dynptrs are indistinguishible.

Hence, allocate a unique id to each dynptr (CONST_PTR_TO_DYNPTR and
those on stack). This will be stored as part of reg->id. Whenever using
bpf_dynptr_data, transfer this unique dynptr id to the returned
PTR_TO_MEM_OR_NULL slice pointer, and store it in a new per-PTR_TO_MEM
dynptr_id register state member.

Finally, after establishing such a relationship between dynptrs and
their slices, implement precise invalidation logic that only invalidates
slices belong to the destroyed dynptr in destroy_if_dynptr_stack_slot.

Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-5-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 17:55:03 -08:00
Kumar Kartikeya Dwivedi
ef8fc7a07c bpf: Fix partial dynptr stack slot reads/writes
Currently, while reads are disallowed for dynptr stack slots, writes are
not. Reads don't work from both direct access and helpers, while writes
do work in both cases, but have the effect of overwriting the slot_type.

While this is fine, handling for a few edge cases is missing. Firstly,
a user can overwrite the stack slots of dynptr partially.

Consider the following layout:
spi: [d][d][?]
      2  1  0

First slot is at spi 2, second at spi 1.
Now, do a write of 1 to 8 bytes for spi 1.

This will essentially either write STACK_MISC for all slot_types or
STACK_MISC and STACK_ZERO (in case of size < BPF_REG_SIZE partial write
of zeroes). The end result is that slot is scrubbed.

Now, the layout is:
spi: [d][m][?]
      2  1  0

Suppose if user initializes spi = 1 as dynptr.
We get:
spi: [d][d][d]
      2  1  0

But this time, both spi 2 and spi 1 have first_slot = true.

Now, when passing spi 2 to dynptr helper, it will consider it as
initialized as it does not check whether second slot has first_slot ==
false. And spi 1 should already work as normal.

This effectively replaced size + offset of first dynptr, hence allowing
invalid OOB reads and writes.

Make a few changes to protect against this:
When writing to PTR_TO_STACK using BPF insns, when we touch spi of a
STACK_DYNPTR type, mark both first and second slot (regardless of which
slot we touch) as STACK_INVALID. Reads are already prevented.

Second, prevent writing	to stack memory from helpers if the range may
contain any STACK_DYNPTR slots. Reads are already prevented.

For helpers, we cannot allow it to destroy dynptrs from the writes as
depending on arguments, helper may take uninit_mem and dynptr both at
the same time. This would mean that helper may write to uninit_mem
before it reads the dynptr, which would be bad.

PTR_TO_MEM: [?????dd]

Depending on the code inside the helper, it may end up overwriting the
dynptr contents first and then read those as the dynptr argument.

Verifier would only simulate destruction when it does byte by byte
access simulation in check_helper_call for meta.access_size, and
fail to catch this case, as it happens after argument checks.

The same would need to be done for any other non-trivial objects created
on the stack in the future, such as bpf_list_head on stack, or
bpf_rb_root on stack.

A common misunderstanding in the current code is that MEM_UNINIT means
writes, but note that writes may also be performed even without
MEM_UNINIT in case of helpers, in that case the code after handling meta
&& meta->raw_mode will complain when it sees STACK_DYNPTR. So that
invalid read case also covers writes to potential STACK_DYNPTR slots.
The only loophole was in case of meta->raw_mode which simulated writes
through instructions which could overwrite them.

A future series sequenced after this will focus on the clean up of
helper access checks and bugs around that.

Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-4-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 17:55:03 -08:00
Kumar Kartikeya Dwivedi
79168a669d bpf: Fix missing var_off check for ARG_PTR_TO_DYNPTR
Currently, the dynptr function is not checking the variable offset part
of PTR_TO_STACK that it needs to check. The fixed offset is considered
when computing the stack pointer index, but if the variable offset was
not a constant (such that it could not be accumulated in reg->off), we
will end up a discrepency where runtime pointer does not point to the
actual stack slot we mark as STACK_DYNPTR.

It is impossible to precisely track dynptr state when variable offset is
not constant, hence, just like bpf_timer, kptr, bpf_spin_lock, etc.
simply reject the case where reg->var_off is not constant. Then,
consider both reg->off and reg->var_off.value when computing the stack
pointer index.

A new helper dynptr_get_spi is introduced to hide over these details
since the dynptr needs to be located in multiple places outside the
process_dynptr_func checks, hence once we know it's a PTR_TO_STACK, we
need to enforce these checks in all places.

Note that it is disallowed for unprivileged users to have a non-constant
var_off, so this problem should only be possible to trigger from
programs having CAP_PERFMON. However, its effects can vary.

Without the fix, it is possible to replace the contents of the dynptr
arbitrarily by making verifier mark different stack slots than actual
location and then doing writes to the actual stack address of dynptr at
runtime.

Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Acked-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 17:55:02 -08:00
Kumar Kartikeya Dwivedi
d6fefa1105 bpf: Fix state pruning for STACK_DYNPTR stack slots
The root of the problem is missing liveness marking for STACK_DYNPTR
slots. This leads to all kinds of problems inside stacksafe.

The verifier by default inside stacksafe ignores spilled_ptr in stack
slots which do not have REG_LIVE_READ marks. Since this is being checked
in the 'old' explored state, it must have already done clean_live_states
for this old bpf_func_state. Hence, it won't be receiving any more
liveness marks from to be explored insns (it has received REG_LIVE_DONE
marking from liveness point of view).

What this means is that verifier considers that it's safe to not compare
the stack slot if was never read by children states. While liveness
marks are usually propagated correctly following the parentage chain for
spilled registers (SCALAR_VALUE and PTR_* types), the same is not the
case for STACK_DYNPTR.

clean_live_states hence simply rewrites these stack slots to the type
STACK_INVALID since it sees no REG_LIVE_READ marks.

The end result is that we will never see STACK_DYNPTR slots in explored
state. Even if verifier was conservatively matching !REG_LIVE_READ
slots, very next check continuing the stacksafe loop on seeing
STACK_INVALID would again prevent further checks.

Now as long as verifier stores an explored state which we can compare to
when reaching a pruning point, we can abuse this bug to make verifier
prune search for obviously unsafe paths using STACK_DYNPTR slots
thinking they are never used hence safe.

Doing this in unprivileged mode is a bit challenging. add_new_state is
only set when seeing BPF_F_TEST_STATE_FREQ (which requires privileges)
or when jmps_processed difference is >= 2 and insn_processed difference
is >= 8. So coming up with the unprivileged case requires a little more
work, but it is still totally possible. The test case being discussed
below triggers the heuristic even in unprivileged mode.

However, it no longer works since commit
8addbfc7b3 ("bpf: Gate dynptr API behind CAP_BPF").

Let's try to study the test step by step.

Consider the following program (C style BPF ASM):

0  r0 = 0;
1  r6 = &ringbuf_map;
3  r1 = r6;
4  r2 = 8;
5  r3 = 0;
6  r4 = r10;
7  r4 -= -16;
8  call bpf_ringbuf_reserve_dynptr;
9  if r0 == 0 goto pc+1;
10 goto pc+1;
11 *(r10 - 16) = 0xeB9F;
12 r1 = r10;
13 r1 -= -16;
14 r2 = 0;
15 call bpf_ringbuf_discard_dynptr;
16 r0 = 0;
17 exit;

We know that insn 12 will be a pruning point, hence if we force
add_new_state for it, it will first verify the following path as
safe in straight line exploration:
0 1 3 4 5 6 7 8 9 -> 10 -> (12) 13 14 15 16 17

Then, when we arrive at insn 12 from the following path:
0 1 3 4 5 6 7 8 9 -> 11 (12)

We will find a state that has been verified as safe already at insn 12.
Since register state is same at this point, regsafe will pass. Next, in
stacksafe, for spi = 0 and spi = 1 (location of our dynptr) is skipped
seeing !REG_LIVE_READ. The rest matches, so stacksafe returns true.
Next, refsafe is also true as reference state is unchanged in both
states.

The states are considered equivalent and search is pruned.

Hence, we are able to construct a dynptr with arbitrary contents and use
the dynptr API to operate on this arbitrary pointer and arbitrary size +
offset.

To fix this, first define a mark_dynptr_read function that propagates
liveness marks whenever a valid initialized dynptr is accessed by dynptr
helpers. REG_LIVE_WRITTEN is marked whenever we initialize an
uninitialized dynptr. This is done in mark_stack_slots_dynptr. It allows
screening off mark_reg_read and not propagating marks upwards from that
point.

This ensures that we either set REG_LIVE_READ64 on both dynptr slots, or
none, so clean_live_states either sets both slots to STACK_INVALID or
none of them. This is the invariant the checks inside stacksafe rely on.

Next, do a complete comparison of both stack slots whenever they have
STACK_DYNPTR. Compare the dynptr type stored in the spilled_ptr, and
also whether both form the same first_slot. Only then is the later path
safe.

Fixes: 97e03f5210 ("bpf: Add verifier support for dynptrs")
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230121002241.2113993-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-20 17:55:02 -08:00
Jakub Kicinski
b3c588cd55 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
drivers/net/ipa/ipa_interrupt.c
drivers/net/ipa/ipa_interrupt.h
  9ec9b2a308 ("net: ipa: disable ipa interrupt during suspend")
  8e461e1f09 ("net: ipa: introduce ipa_interrupt_enable()")
  d50ed35587 ("net: ipa: enable IPA interrupt handlers separate from registration")
https://lore.kernel.org/all/20230119114125.5182c7ab@canb.auug.org.au/
https://lore.kernel.org/all/79e46152-8043-a512-79d9-c3b905462774@tessares.net/

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-20 12:28:23 -08:00
Eduard Zingerman
71f656a501 bpf: Fix to preserve reg parent/live fields when copying range info
Register range information is copied in several places. The intent is
to transfer range/id information from one register/stack spill to
another. Currently this is done using direct register assignment, e.g.:

static void find_equal_scalars(..., struct bpf_reg_state *known_reg)
{
	...
	struct bpf_reg_state *reg;
	...
			*reg = *known_reg;
	...
}

However, such assignments also copy the following bpf_reg_state fields:

struct bpf_reg_state {
	...
	struct bpf_reg_state *parent;
	...
	enum bpf_reg_liveness live;
	...
};

Copying of these fields is accidental and incorrect, as could be
demonstrated by the following example:

     0: call ktime_get_ns()
     1: r6 = r0
     2: call ktime_get_ns()
     3: r7 = r0
     4: if r0 > r6 goto +1             ; r0 & r6 are unbound thus generated
                                       ; branch states are identical
     5: *(u64 *)(r10 - 8) = 0xdeadbeef ; 64-bit write to fp[-8]
    --- checkpoint ---
     6: r1 = 42                        ; r1 marked as written
     7: *(u8 *)(r10 - 8) = r1          ; 8-bit write, fp[-8] parent & live
                                       ; overwritten
     8: r2 = *(u64 *)(r10 - 8)
     9: r0 = 0
    10: exit

This example is unsafe because 64-bit write to fp[-8] at (5) is
conditional, thus not all bytes of fp[-8] are guaranteed to be set
when it is read at (8). However, currently the example passes
verification.

First, the execution path 1-10 is examined by verifier.
Suppose that a new checkpoint is created by is_state_visited() at (6).
After checkpoint creation:
- r1.parent points to checkpoint.r1,
- fp[-8].parent points to checkpoint.fp[-8].
At (6) the r1.live is set to REG_LIVE_WRITTEN.
At (7) the fp[-8].parent is set to r1.parent and fp[-8].live is set to
REG_LIVE_WRITTEN, because of the following code called in
check_stack_write_fixed_off():

static void save_register_state(struct bpf_func_state *state,
				int spi, struct bpf_reg_state *reg,
				int size)
{
	...
	state->stack[spi].spilled_ptr = *reg;  // <--- parent & live copied
	if (size == BPF_REG_SIZE)
		state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
	...
}

Note the intent to mark stack spill as written only if 8 bytes are
spilled to a slot, however this intent is spoiled by a 'live' field copy.
At (8) the checkpoint.fp[-8] should be marked as REG_LIVE_READ but
this does not happen:
- fp[-8] in a current state is already marked as REG_LIVE_WRITTEN;
- fp[-8].parent points to checkpoint.r1, parentage chain is used by
  mark_reg_read() to mark checkpoint states.
At (10) the verification is finished for path 1-10 and jump 4-6 is
examined. The checkpoint.fp[-8] never gets REG_LIVE_READ mark and this
spill is pruned from the cached states by clean_live_states(). Hence
verifier state obtained via path 1-4,6 is deemed identical to one
obtained via path 1-6 and program marked as safe.

Note: the example should be executed with BPF_F_TEST_STATE_FREQ flag
set to force creation of intermediate verifier states.

This commit revisits the locations where bpf_reg_state instances are
copied and replaces the direct copies with a call to a function
copy_register_state(dst, src) that preserves 'parent' and 'live'
fields of the 'dst'.

Fixes: 679c782de1 ("bpf/verifier: per-register parent pointers")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230106142214.1040390-2-eddyz87@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-19 15:19:23 -08:00
Jiri Olsa
700e6f853e bpf: Do not allow to load sleepable BPF_TRACE_RAW_TP program
Currently we allow to load any tracing program as sleepable,
but BPF_TRACE_RAW_TP can't sleep. Making the check explicit
for tracing programs attach types, so sleepable BPF_TRACE_RAW_TP
will fail to load.

Updating the verifier error to mention iter programs as well.

Acked-by: Song Liu <song@kernel.org>
Acked-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230117223705.440975-1-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2023-01-17 16:56:04 -08:00
Luis Gerhorst
e4f4db4779 bpf: Fix pointer-leak due to insufficient speculative store bypass mitigation
To mitigate Spectre v4, 2039f26f3a ("bpf: Fix leakage due to
insufficient speculative store bypass mitigation") inserts lfence
instructions after 1) initializing a stack slot and 2) spilling a
pointer to the stack.

However, this does not cover cases where a stack slot is first
initialized with a pointer (subject to sanitization) but then
overwritten with a scalar (not subject to sanitization because
the slot was already initialized). In this case, the second write
may be subject to speculative store bypass (SSB) creating a
speculative pointer-as-scalar type confusion. This allows the
program to subsequently leak the numerical pointer value using,
for example, a branch-based cache side channel.

To fix this, also sanitize scalars if they write a stack slot
that previously contained a pointer. Assuming that pointer-spills
are only generated by LLVM on register-pressure, the performance
impact on most real-world BPF programs should be small.

The following unprivileged BPF bytecode drafts a minimal exploit
and the mitigation:

  [...]
  // r6 = 0 or 1 (skalar, unknown user input)
  // r7 = accessible ptr for side channel
  // r10 = frame pointer (fp), to be leaked
  //
  r9 = r10 # fp alias to encourage ssb
  *(u64 *)(r9 - 8) = r10 // fp[-8] = ptr, to be leaked
  // lfence added here because of pointer spill to stack.
  //
  // Ommitted: Dummy bpf_ringbuf_output() here to train alias predictor
  // for no r9-r10 dependency.
  //
  *(u64 *)(r10 - 8) = r6 // fp[-8] = scalar, overwrites ptr
  // 2039f26f3a: no lfence added because stack slot was not STACK_INVALID,
  // store may be subject to SSB
  //
  // fix: also add an lfence when the slot contained a ptr
  //
  r8 = *(u64 *)(r9 - 8)
  // r8 = architecturally a scalar, speculatively a ptr
  //
  // leak ptr using branch-based cache side channel:
  r8 &= 1 // choose bit to leak
  if r8 == 0 goto SLOW // no mispredict
  // architecturally dead code if input r6 is 0,
  // only executes speculatively iff ptr bit is 1
  r8 = *(u64 *)(r7 + 0) # encode bit in cache (0: slow, 1: fast)
SLOW:
  [...]

After running this, the program can time the access to *(r7 + 0) to
determine whether the chosen pointer bit was 0 or 1. Repeat this 64
times to recover the whole address on amd64.

In summary, sanitization can only be skipped if one scalar is
overwritten with another scalar. Scalar-confusion due to speculative
store bypass can not lead to invalid accesses because the pointer
bounds deducted during verification are enforced using branchless
logic. See 979d63d50c ("bpf: prevent out of bounds speculation on
pointer arithmetic") for details.

Do not make the mitigation depend on !env->allow_{uninit_stack,ptr_leaks}
because speculative leaks are likely unexpected if these were enabled.
For example, leaking the address to a protected log file may be acceptable
while disabling the mitigation might unintentionally leak the address
into the cached-state of a map that is accessible to unprivileged
processes.

Fixes: 2039f26f3a ("bpf: Fix leakage due to insufficient speculative store bypass mitigation")
Signed-off-by: Luis Gerhorst <gerhorst@cs.fau.de>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Henriette Hofmeier <henriette.hofmeier@rub.de>
Link: https://lore.kernel.org/bpf/edc95bad-aada-9cfc-ffe2-fa9bb206583c@cs.fau.de
Link: https://lore.kernel.org/bpf/20230109150544.41465-1-gerhorst@cs.fau.de
2023-01-13 17:18:35 +01:00
Hao Sun
d3178e8a43 bpf: Skip invalid kfunc call in backtrack_insn
The verifier skips invalid kfunc call in check_kfunc_call(), which
would be captured in fixup_kfunc_call() if such insn is not eliminated
by dead code elimination. However, this can lead to the following
warning in backtrack_insn(), also see [1]:

  ------------[ cut here ]------------
  verifier backtracking bug
  WARNING: CPU: 6 PID: 8646 at kernel/bpf/verifier.c:2756 backtrack_insn
  kernel/bpf/verifier.c:2756
	__mark_chain_precision kernel/bpf/verifier.c:3065
	mark_chain_precision kernel/bpf/verifier.c:3165
	adjust_reg_min_max_vals kernel/bpf/verifier.c:10715
	check_alu_op kernel/bpf/verifier.c:10928
	do_check kernel/bpf/verifier.c:13821 [inline]
	do_check_common kernel/bpf/verifier.c:16289
  [...]

So make backtracking conservative with this by returning ENOTSUPP.

  [1] https://lore.kernel.org/bpf/CACkBjsaXNceR8ZjkLG=dT3P=4A8SBsg0Z5h5PWLryF5=ghKq=g@mail.gmail.com/

Reported-by: syzbot+4da3ff23081bafe74fc2@syzkaller.appspotmail.com
Signed-off-by: Hao Sun <sunhao.th@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230104014709.9375-1-sunhao.th@gmail.com
2023-01-06 18:49:37 +01:00
Jakub Kicinski
4aea86b403 Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
No conflicts.

Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2023-01-05 15:34:11 -08:00
Dave Marchevsky
30465003ad bpf: rename list_head -> graph_root in field info types
Many of the structs recently added to track field info for linked-list
head are useful as-is for rbtree root. So let's do a mechanical renaming
of list_head-related types and fields:

include/linux/bpf.h:
  struct btf_field_list_head -> struct btf_field_graph_root
  list_head -> graph_root in struct btf_field union
kernel/bpf/btf.c:
  list_head -> graph_root in struct btf_field_info

This is a nonfunctional change, functionality to actually use these
fields for rbtree will be added in further patches.

Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20221217082506.1570898-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-28 20:14:22 -08:00
Kees Cook
45435d8da7 bpf: Always use maximal size for copy_array()
Instead of counting on prior allocations to have sized allocations to
the next kmalloc bucket size, always perform a krealloc that is at least
ksize(dst) in size (which is a no-op), so the size can be correctly
tracked by all the various allocation size trackers (KASAN,
__alloc_size, etc).

Reported-by: Hyunwoo Kim <v4bel@theori.io>
Link: https://lore.kernel.org/bpf/20221223094551.GA1439509@ubuntu
Fixes: ceb35b666d ("bpf/verifier: Use kmalloc_size_roundup() to match ksize() usage")
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <martin.lau@linux.dev>
Cc: Song Liu <song@kernel.org>
Cc: Yonghong Song <yhs@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
Cc: Stanislav Fomichev <sdf@google.com>
Cc: Hao Luo <haoluo@google.com>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: bpf@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221223182836.never.866-kees@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-28 14:54:53 -08:00
Andrii Nakryiko
4633a00682 bpf: fix regs_exact() logic in regsafe() to remap IDs correctly
Comparing IDs exactly between two separate states is not just
suboptimal, but also incorrect in some cases. So update regs_exact()
check to do byte-by-byte memcmp() only up to id/ref_obj_id. For id and
ref_obj_id perform proper check_ids() checks, taking into account idmap.

This change makes more states equivalent improving insns and states
stats across a bunch of selftest BPF programs:

File                                         Program                           Insns (A)  Insns (B)  Insns   (DIFF)  States (A)  States (B)  States (DIFF)
-------------------------------------------  --------------------------------  ---------  ---------  --------------  ----------  ----------  -------------
cgrp_kfunc_success.bpf.linked1.o             test_cgrp_get_release                   141        137     -4 (-2.84%)          13          13    +0 (+0.00%)
cgrp_kfunc_success.bpf.linked1.o             test_cgrp_xchg_release                  142        139     -3 (-2.11%)          14          13    -1 (-7.14%)
connect6_prog.bpf.linked1.o                  connect_v6_prog                         139        102   -37 (-26.62%)           9           6   -3 (-33.33%)
ima.bpf.linked1.o                            bprm_creds_for_exec                      68         61    -7 (-10.29%)           6           5   -1 (-16.67%)
linked_list.bpf.linked1.o                    global_list_in_list                     569        499   -70 (-12.30%)          60          52   -8 (-13.33%)
linked_list.bpf.linked1.o                    global_list_push_pop                    167        150   -17 (-10.18%)          18          16   -2 (-11.11%)
linked_list.bpf.linked1.o                    global_list_push_pop_multiple           881        815    -66 (-7.49%)          74          63  -11 (-14.86%)
linked_list.bpf.linked1.o                    inner_map_list_in_list                  579        534    -45 (-7.77%)          61          55    -6 (-9.84%)
linked_list.bpf.linked1.o                    inner_map_list_push_pop                 190        181     -9 (-4.74%)          19          18    -1 (-5.26%)
linked_list.bpf.linked1.o                    inner_map_list_push_pop_multiple        916        850    -66 (-7.21%)          75          64  -11 (-14.67%)
linked_list.bpf.linked1.o                    map_list_in_list                        588        525   -63 (-10.71%)          62          55   -7 (-11.29%)
linked_list.bpf.linked1.o                    map_list_push_pop                       183        174     -9 (-4.92%)          18          17    -1 (-5.56%)
linked_list.bpf.linked1.o                    map_list_push_pop_multiple              909        843    -66 (-7.26%)          75          64  -11 (-14.67%)
map_kptr.bpf.linked1.o                       test_map_kptr                           264        256     -8 (-3.03%)          26          26    +0 (+0.00%)
map_kptr.bpf.linked1.o                       test_map_kptr_ref                        95         91     -4 (-4.21%)           9           8   -1 (-11.11%)
task_kfunc_success.bpf.linked1.o             test_task_xchg_release                  139        136     -3 (-2.16%)          14          13    -1 (-7.14%)
test_bpf_nf.bpf.linked1.o                    nf_skb_ct_test                          815        509  -306 (-37.55%)          57          30  -27 (-47.37%)
test_bpf_nf.bpf.linked1.o                    nf_xdp_ct_test                          815        509  -306 (-37.55%)          57          30  -27 (-47.37%)
test_cls_redirect.bpf.linked1.o              cls_redirect                          78925      78390   -535 (-0.68%)        4782        4704   -78 (-1.63%)
test_cls_redirect_subprogs.bpf.linked1.o     cls_redirect                          64901      63897  -1004 (-1.55%)        4612        4470  -142 (-3.08%)
test_sk_lookup.bpf.linked1.o                 access_ctx_sk                           181         95   -86 (-47.51%)          19          10   -9 (-47.37%)
test_sk_lookup.bpf.linked1.o                 ctx_narrow_access                       447        437    -10 (-2.24%)          38          37    -1 (-2.63%)
test_sk_lookup_kern.bpf.linked1.o            sk_lookup_success                       148        133   -15 (-10.14%)          14          12   -2 (-14.29%)
test_tcp_check_syncookie_kern.bpf.linked1.o  check_syncookie_clsact                  304        300     -4 (-1.32%)          23          22    -1 (-4.35%)
test_tcp_check_syncookie_kern.bpf.linked1.o  check_syncookie_xdp                     304        300     -4 (-1.32%)          23          22    -1 (-4.35%)
test_verify_pkcs7_sig.bpf.linked1.o          bpf                                      87         76   -11 (-12.64%)           7           6   -1 (-14.29%)
-------------------------------------------  --------------------------------  ---------  ---------  --------------  ----------  ----------  -------------

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-27 17:37:07 -08:00
Andrii Nakryiko
4a95c85c99 bpf: perform byte-by-byte comparison only when necessary in regsafe()
Extract byte-by-byte comparison of bpf_reg_state in regsafe() into
a helper function, which makes it more convenient to use it "on demand"
only for registers that benefit from such checks, instead of doing it
all the time, even if result of such comparison is ignored.

Also, remove WARN_ON_ONCE(1)+return false dead code. There is no risk of
missing some case as compiler will warn about non-void function not
returning value in some branches (and that under assumption that default
case is removed in the future).

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-27 17:37:07 -08:00
Andrii Nakryiko
910f699966 bpf: reject non-exact register type matches in regsafe()
Generalize the (somewhat implicit) rule of regsafe(), which states that
if register types in old and current states do not match *exactly*, they
can't be safely considered equivalent.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-27 17:37:07 -08:00
Andrii Nakryiko
7f4ce97cd5 bpf: generalize MAYBE_NULL vs non-MAYBE_NULL rule
Make generic check to prevent XXX_OR_NULL and XXX register types to be
intermixed. While technically in some situations it could be safe, it's
impossible to enforce due to the loss of an ID when converting
XXX_OR_NULL to its non-NULL variant. So prevent this in general, not
just for PTR_TO_MAP_KEY and PTR_TO_MAP_VALUE.

PTR_TO_MAP_KEY_OR_NULL and PTR_TO_MAP_VALUE_OR_NULL checks, which were
previously special-cased, are simplified to generic check that takes
into account range_within() and tnum_in(). This is correct as BPF
verifier doesn't allow arithmetic on XXX_OR_NULL register types, so
var_off and ranges should stay zero. But even if in the future this
restriction is lifted, it's even more important to enforce that var_off
and ranges are compatible, otherwise it's possible to construct case
where this can be exploited to bypass verifier's memory range safety
checks.

Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20221223054921.958283-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2022-12-27 17:37:07 -08:00