Allocate only an internal intel_context for the kernel_context, forgoing
a global GEM context for internal use as we only require a separate
address space (for our own protection).
Now having weaned GT from requiring ce->gem_context, we can stop
referencing it entirely. This also means we no longer have to create random
and unnecessary GEM contexts for internal use.
GEM contexts are now entirely for tracking GEM clients, and intel_context
the execution environment on the GPU.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Andi Shyti <andi.shyti@intel.com>
Acked-by: Andi Shyti <andi.shyti@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191221160324.1073045-1-chris@chris-wilson.co.uk
We need to keep the context image pinned in memory until after the GPU
has finished writing into it. Since it continues to write as we signal
the final breadcrumb, we need to keep it pinned until the request after
it is complete. Currently we know the order in which requests execute on
each engine, and so to remove that presumption we need to identify a
request/context-switch we know must occur after our completion. Any
request queued after the signal must imply a context switch, for
simplicity we use a fresh request from the kernel context.
The sequence of operations for keeping the context pinned until saved is:
- On context activation, we preallocate a node for each physical engine
the context may operate on. This is to avoid allocations during
unpinning, which may be from inside FS_RECLAIM context (aka the
shrinker)
- On context deactivation on retirement of the last active request (which
is before we know the context has been saved), we add the
preallocated node onto a barrier list on each engine
- On engine idling, we emit a switch to kernel context. When this
switch completes, we know that all previous contexts must have been
saved, and so on retiring this request we can finally unpin all the
contexts that were marked as deactivated prior to the switch.
We can enhance this in future by flushing all the idle contexts on a
regular heartbeat pulse of a switch to kernel context, which will also
be used to check for hung engines.
v2: intel_context_active_acquire/_release
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190614164606.15633-1-chris@chris-wilson.co.uk
Replace the racy continuation check within retire_work with a definite
kill-switch on idling. The race was being exposed by gem_concurrent_blit
where the retire_worker would be terminated too early leaving us
spinning in debugfs/i915_drop_caches with nothing flushing the
retirement queue.
Although that the igt is trying to idle from one child while submitting
from another may be a contributing factor as to why it runs so slowly...
v2: Use the non-sync version of cancel_delayed_work(), we only need to
stop it from being scheduled as we independently check whether now is
the right time to be parking.
Testcase: igt/gem_concurrent_blit
Fixes: 79ffac8599 ("drm/i915: Invert the GEM wakeref hierarchy")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190507121108.18377-3-chris@chris-wilson.co.uk
The original intent for the delay before running the idle_work was to
provide a hysteresis to avoid ping-ponging the device runtime-pm. Since
then we have also pulled in some memory management and general device
management for parking. But with the inversion of the wakeref handling,
GEM is no longer responsible for the wakeref and by the time we call the
idle_work, the device is asleep. It seems appropriate now to drop the
delay and just run the worker immediately to flush the cached GEM state
before sleeping.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190507121108.18377-2-chris@chris-wilson.co.uk
In the current scheme, on submitting a request we take a single global
GEM wakeref, which trickles down to wake up all GT power domains. This
is undesirable as we would like to be able to localise our power
management to the available power domains and to remove the global GEM
operations from the heart of the driver. (The intent there is to push
global GEM decisions to the boundary as used by the GEM user interface.)
Now during request construction, each request is responsible via its
logical context to acquire a wakeref on each power domain it intends to
utilize. Currently, each request takes a wakeref on the engine(s) and
the engines themselves take a chipset wakeref. This gives us a
transition on each engine which we can extend if we want to insert more
powermangement control (such as soft rc6). The global GEM operations
that currently require a struct_mutex are reduced to listening to pm
events from the chipset GT wakeref. As we reduce the struct_mutex
requirement, these listeners should evaporate.
Perhaps the biggest immediate change is that this removes the
struct_mutex requirement around GT power management, allowing us greater
flexibility in request construction. Another important knock-on effect,
is that by tracking engine usage, we can insert a switch back to the
kernel context on that engine immediately, avoiding any extra delay or
inserting global synchronisation barriers. This makes tracking when an
engine and its associated contexts are idle much easier -- important for
when we forgo our assumed execution ordering and need idle barriers to
unpin used contexts. In the process, it means we remove a large chunk of
code whose only purpose was to switch back to the kernel context.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Imre Deak <imre.deak@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190424200717.1686-5-chris@chris-wilson.co.uk
Currently we assume that we know the order in which requests run and so
can determine if we need to reissue a switch-to-kernel-context prior to
idling. That assumption does not hold for the future, so instead of
tracking which barriers have been used, simply determine if we have ever
switched away from the kernel context by using the engine and before
idling ensure that all engines that have been used since the last idle
are synchronously switched back to the kernel context for safety (and
else of shrinking memory while idle).
v2: Use intel_engine_mask_t and ALL_ENGINES
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190308093657.8640-3-chris@chris-wilson.co.uk
In the next patch, we are introducing a broad virtual engine to encompass
multiple physical engines, losing the 1:1 nature of BIT(engine->id). To
reflect the broader set of engines implied by the virtual instance, lets
store the full bitmask.
v2: Use intel_engine_mask_t (s/ring_mask/engine_mask/)
v3: Tvrtko voted for moah churn so teach everyone to not mention ring
and use $class$instance throughout.
v4: Comment upon the disparity in bspec for using VCS1,VCS2 in gen8 and
VCS[0-4] in later gen. We opt to keep the code consistent and use
0-index naming throughout.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190305180332.30900-1-chris@chris-wilson.co.uk
As kmem_caches share the same properties (size, allocation/free behaviour)
for all potential devices, we can use global caches. While this
potential has worse fragmentation behaviour (one can argue that
different devices would have different activity lifetimes, but you can
also argue that activity is temporal across the system) it is the
default behaviour of the system at large to amalgamate matching caches.
The benefit for us is much reduced pointer dancing along the frequent
allocation paths.
v2: Defer shrinking until after a global grace period for futureproofing
multiple consumers of the slab caches, similar to the current strategy
for avoiding shrinking too early.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190228102035.5857-1-chris@chris-wilson.co.uk
Previously, we were able to rely on the recursive properties of
struct_mutex to allow us to serialise revoking mmaps and reacquiring the
FENCE registers with them being clobbered over a global device reset.
I then proceeded to throw out the baby with the bath water in order to
pursue a struct_mutex-less reset.
Perusing LWN for alternative strategies, the dilemma on how to serialise
access to a global resource on one side was answered by
https://lwn.net/Articles/202847/ -- Sleepable RCU:
1 int readside(void) {
2 int idx;
3 rcu_read_lock();
4 if (nomoresrcu) {
5 rcu_read_unlock();
6 return -EINVAL;
7 }
8 idx = srcu_read_lock(&ss);
9 rcu_read_unlock();
10 /* SRCU read-side critical section. */
11 srcu_read_unlock(&ss, idx);
12 return 0;
13 }
14
15 void cleanup(void)
16 {
17 nomoresrcu = 1;
18 synchronize_rcu();
19 synchronize_srcu(&ss);
20 cleanup_srcu_struct(&ss);
21 }
No more worrying about stop_machine, just an uber-complex mutex,
optimised for reads, with the overhead pushed to the rare reset path.
However, we do run the risk of a deadlock as we allocate underneath the
SRCU read lock, and the allocation may require a GPU reset, causing a
dependency cycle via the in-flight requests. We resolve that by declaring
the driver wedged and cancelling all in-flight rendering.
v2: Use expedited rcu barriers to match our earlier timing
characteristics.
v3: Try to annotate locking contexts for sparse
v4: Reduce selftest lock duration to avoid a reset deadlock with fences
v5: s/srcu/reset_backoff_srcu/
v6: Remove more stale comments
Testcase: igt/gem_mmap_gtt/hang
Fixes: eb8d0f5af4 ("drm/i915: Remove GPU reset dependence on struct_mutex")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190208153708.20023-2-chris@chris-wilson.co.uk
Now that the submission backends are controlled via their own spinlocks,
with a wave of a magic wand we can lift the struct_mutex requirement
around GPU reset. That is we allow the submission frontend (userspace)
to keep on submitting while we process the GPU reset as we can suspend
the backend independently.
The major change is around the backoff/handoff strategy for performing
the reset. With no mutex deadlock, we no longer have to coordinate with
any waiter, and just perform the reset immediately.
Testcase: igt/gem_mmap_gtt/hang # regresses
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190125132230.22221-3-chris@chris-wilson.co.uk