Patch series "selftests/mm: new test for FOLL_LONGTERM on file mappings".
Let's add some selftests to make sure that:
* R/O long-term pinning always works of file mappings
* R/W long-term pinning always works in MAP_PRIVATE file mappings
* R/W long-term pinning only works in MAP_SHARED mappings with special
filesystems (shmem, hugetlb) and fails with other filesystems (ext4, btrfs,
xfs).
The tests make use of the gup_test kernel module to trigger ordinary GUP
and GUP-fast, and liburing (similar to our COW selftests). Test with
memfd, memfd hugetlb, tmpfile() and mkstemp(). The latter usually gives
us a "real" filesystem (ext4, btrfs, xfs) where long-term pinning is
expected to fail.
Note that these selftests don't contain any actual reproducers for data
corruptions in case R/W long-term pinning on problematic filesystems
"would" work.
Maybe we can later come up with a racy !FOLL_LONGTERM reproducer that can
reuse an existing interface to trigger short-term pinning (I'll look into
that next).
On current mm/mm-unstable:
# ./gup_longterm
# [INFO] detected hugetlb page size: 2048 KiB
# [INFO] detected hugetlb page size: 1048576 KiB
TAP version 13
1..50
# [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with memfd
ok 1 Should have worked
# [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with tmpfile
ok 2 Should have worked
# [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with local tmpfile
ok 3 Should have failed
# [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB)
ok 4 Should have worked
# [RUN] R/W longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB)
ok 5 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd
ok 6 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with tmpfile
ok 7 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with local tmpfile
ok 8 Should have failed
# [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB)
ok 9 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB)
ok 10 Should have worked
# [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with memfd
ok 11 Should have worked
# [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with tmpfile
ok 12 Should have worked
# [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with local tmpfile
ok 13 Should have worked
# [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB)
ok 14 Should have worked
# [RUN] R/O longterm GUP pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB)
ok 15 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd
ok 16 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with tmpfile
ok 17 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with local tmpfile
ok 18 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (2048 kB)
ok 19 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB)
ok 20 Should have worked
# [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with memfd
ok 21 Should have worked
# [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with tmpfile
ok 22 Should have worked
# [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with local tmpfile
ok 23 Should have worked
# [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB)
ok 24 Should have worked
# [RUN] R/W longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB)
ok 25 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd
ok 26 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with tmpfile
ok 27 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with local tmpfile
ok 28 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB)
ok 29 Should have worked
# [RUN] R/W longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB)
ok 30 Should have worked
# [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with memfd
ok 31 Should have worked
# [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with tmpfile
ok 32 Should have worked
# [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with local tmpfile
ok 33 Should have worked
# [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB)
ok 34 Should have worked
# [RUN] R/O longterm GUP pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB)
ok 35 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd
ok 36 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with tmpfile
ok 37 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with local tmpfile
ok 38 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB)
ok 39 Should have worked
# [RUN] R/O longterm GUP-fast pin in MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB)
ok 40 Should have worked
# [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with memfd
ok 41 Should have worked
# [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with tmpfile
ok 42 Should have worked
# [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with local tmpfile
ok 43 Should have failed
# [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with memfd hugetlb (2048 kB)
ok 44 Should have worked
# [RUN] io_uring fixed buffer with MAP_SHARED file mapping ... with memfd hugetlb (1048576 kB)
ok 45 Should have worked
# [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with memfd
ok 46 Should have worked
# [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with tmpfile
ok 47 Should have worked
# [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with local tmpfile
ok 48 Should have worked
# [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with memfd hugetlb (2048 kB)
ok 49 Should have worked
# [RUN] io_uring fixed buffer with MAP_PRIVATE file mapping ... with memfd hugetlb (1048576 kB)
ok 50 Should have worked
# Totals: pass:50 fail:0 xfail:0 xpass:0 skip:0 error:0
This patch (of 3):
Let's factor detection out into vm_util, to be reused by a new test.
Link: https://lkml.kernel.org/r/20230519102723.185721-1-david@redhat.com
Link: https://lkml.kernel.org/r/20230519102723.185721-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jason Gunthorpe <jgg@nvidia.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add two helpers to register/unregister to an uffd. Use them to drop
duplicate codes.
This patch also drops assert_expected_ioctls_present() and
get_expected_ioctls(). Reasons:
- It'll need a lot of effort to pass test_type==HUGETLB into it from
the upper, so it's the simplest way to get rid of another global var
- The ioctls returned in UFFDIO_REGISTER is hardly useful at all,
because any app can already detect kernel support on any ioctl via its
corresponding UFFD_FEATURE_*. The check here is for sanity mostly but
it's probably destined no user app will even use it.
- It's not friendly to one future goal of uffd to run on old
kernels, the problem is get_expected_ioctls() compiles against
UFFD_API_RANGE_IOCTLS, which is a value that can change depending on
where the test is compiled, rather than reflecting what the kernel
underneath has. It means it'll report false negatives on old kernels
so it's against our will.
So let's make our lives easier.
[peterx@redhat.com; tools/testing/selftests/mm/hugepage-mremap.c: add headers]
Link: https://lkml.kernel.org/r/ZDxrvZh/cw357D8P@x1n
Link: https://lkml.kernel.org/r/20230412164247.328293-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: (pte|pmd)_mkdirty() should not unconditionally allow for
write access".
This is the follow-up on [1], adding selftests (testing for known issues
we added workarounds for and other issues that haven't been fixed yet),
fixing sparc64, reverting the workarounds, and perform one cleanup.
The patch from [1] was modified slightly (updated/extended patch
description, dropped one unnecessary NOP instruction from the ASM in
__pte_mkhwwrite()).
Retested on x86_64 and sparc64 (sun4u in QEMU).
I scanned most architectures to make sure their (pte|pmd)_mkdirty()
handling is correct. To be sure, we can run the selftests and find out if
other architectures are still affectes (loongarch was fixed recently as
well).
Based on master for now. I don't expect surprises regarding mm-tress, but
I can rebase if there are any problems.
This patch (of 6):
The COW selftest can deal with THP not being configured. So move error
handling of read_pmd_pagesize() into the callers such that we can reuse it
in the COW selftest.
Link: https://lkml.kernel.org/r/20230411142512.438404-1-david@redhat.com
Link: https://lkml.kernel.org/r/20221212130213.136267-1-david@redhat.com [1]
Link: https://lkml.kernel.org/r/20230411142512.438404-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>