commit f8f931bba0 upstream.
Recent changes are putting more pressure on THP deferred split queues:
under load revealing long-standing races, causing list_del corruptions,
"Bad page state"s and worse (I keep BUGs in both of those, so usually
don't get to see how badly they end up without). The relevant recent
changes being 6.8's mTHP, 6.10's mTHP swapout, and 6.12's mTHP swapin,
improved swap allocation, and underused THP splitting.
Before fixing locking: rename misleading folio_undo_large_rmappable(),
which does not undo large_rmappable, to folio_unqueue_deferred_split(),
which is what it does. But that and its out-of-line __callee are mm
internals of very limited usability: add comment and WARN_ON_ONCEs to
check usage; and return a bool to say if a deferred split was unqueued,
which can then be used in WARN_ON_ONCEs around safety checks (sparing
callers the arcane conditionals in __folio_unqueue_deferred_split()).
Just omit the folio_unqueue_deferred_split() from free_unref_folios(), all
of whose callers now call it beforehand (and if any forget then bad_page()
will tell) - except for its caller put_pages_list(), which itself no
longer has any callers (and will be deleted separately).
Swapout: mem_cgroup_swapout() has been resetting folio->memcg_data 0
without checking and unqueueing a THP folio from deferred split list;
which is unfortunate, since the split_queue_lock depends on the memcg
(when memcg is enabled); so swapout has been unqueueing such THPs later,
when freeing the folio, using the pgdat's lock instead: potentially
corrupting the memcg's list. __remove_mapping() has frozen refcount to 0
here, so no problem with calling folio_unqueue_deferred_split() before
resetting memcg_data.
That goes back to 5.4 commit 87eaceb3fa ("mm: thp: make deferred split
shrinker memcg aware"): which included a check on swapcache before adding
to deferred queue, but no check on deferred queue before adding THP to
swapcache. That worked fine with the usual sequence of events in reclaim
(though there were a couple of rare ways in which a THP on deferred queue
could have been swapped out), but 6.12 commit dafff3f4c8 ("mm: split
underused THPs") avoids splitting underused THPs in reclaim, which makes
swapcache THPs on deferred queue commonplace.
Keep the check on swapcache before adding to deferred queue? Yes: it is
no longer essential, but preserves the existing behaviour, and is likely
to be a worthwhile optimization (vmstat showed much more traffic on the
queue under swapping load if the check was removed); update its comment.
Memcg-v1 move (deprecated): mem_cgroup_move_account() has been changing
folio->memcg_data without checking and unqueueing a THP folio from the
deferred list, sometimes corrupting "from" memcg's list, like swapout.
Refcount is non-zero here, so folio_unqueue_deferred_split() can only be
used in a WARN_ON_ONCE to validate the fix, which must be done earlier:
mem_cgroup_move_charge_pte_range() first try to split the THP (splitting
of course unqueues), or skip it if that fails. Not ideal, but moving
charge has been requested, and khugepaged should repair the THP later:
nobody wants new custom unqueueing code just for this deprecated case.
The 87eaceb3fa commit did have the code to move from one deferred list
to another (but was not conscious of its unsafety while refcount non-0);
but that was removed by 5.6 commit fac0516b55 ("mm: thp: don't need care
deferred split queue in memcg charge move path"), which argued that the
existence of a PMD mapping guarantees that the THP cannot be on a deferred
list. As above, false in rare cases, and now commonly false.
Backport to 6.11 should be straightforward. Earlier backports must take
care that other _deferred_list fixes and dependencies are included. There
is not a strong case for backports, but they can fix cornercases.
Link: https://lkml.kernel.org/r/8dc111ae-f6db-2da7-b25c-7a20b1effe3b@google.com
Fixes: 87eaceb3fa ("mm: thp: make deferred split shrinker memcg aware")
Fixes: dafff3f4c8 ("mm: split underused THPs")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Usama Arif <usamaarif642@gmail.com>
Cc: Wei Yang <richard.weiyang@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit 73f576c04b ("mm: memcontrol: fix cgroup creation failure after
many small jobs") decoupled the memcg IDs from the CSS ID space to fix the
cgroup creation failures. It introduced IDR to maintain the memcg ID
space. The IDR depends on external synchronization mechanisms for
modifications. For the mem_cgroup_idr, the idr_alloc() and idr_replace()
happen within css callback and thus are protected through cgroup_mutex
from concurrent modifications. However idr_remove() for mem_cgroup_idr
was not protected against concurrency and can be run concurrently for
different memcgs when they hit their refcnt to zero. Fix that.
We have been seeing list_lru based kernel crashes at a low frequency in
our fleet for a long time. These crashes were in different part of
list_lru code including list_lru_add(), list_lru_del() and reparenting
code. Upon further inspection, it looked like for a given object (dentry
and inode), the super_block's list_lru didn't have list_lru_one for the
memcg of that object. The initial suspicions were either the object is
not allocated through kmem_cache_alloc_lru() or somehow
memcg_list_lru_alloc() failed to allocate list_lru_one() for a memcg but
returned success. No evidence were found for these cases.
Looking more deeply, we started seeing situations where valid memcg's id
is not present in mem_cgroup_idr and in some cases multiple valid memcgs
have same id and mem_cgroup_idr is pointing to one of them. So, the most
reasonable explanation is that these situations can happen due to race
between multiple idr_remove() calls or race between
idr_alloc()/idr_replace() and idr_remove(). These races are causing
multiple memcgs to acquire the same ID and then offlining of one of them
would cleanup list_lrus on the system for all of them. Later access from
other memcgs to the list_lru cause crashes due to missing list_lru_one.
Link: https://lkml.kernel.org/r/20240802235822.1830976-1-shakeel.butt@linux.dev
Fixes: 73f576c04b ("mm: memcontrol: fix cgroup creation failure after many small jobs")
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Muchun Song <muchun.song@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Even on 6.10-rc6, I've been seeing elusive "Bad page state"s (often on
flags when freeing, yet the flags shown are not bad: PG_locked had been
set and cleared??), and VM_BUG_ON_PAGE(page_ref_count(page) == 0)s from
deferred_split_scan()'s folio_put(), and a variety of other BUG and WARN
symptoms implying double free by deferred split and large folio migration.
6.7 commit 9bcef5973e ("mm: memcg: fix split queue list crash when large
folio migration") was right to fix the memcg-dependent locking broken in
85ce2c517a ("memcontrol: only transfer the memcg data for migration"),
but missed a subtlety of deferred_split_scan(): it moves folios to its own
local list to work on them without split_queue_lock, during which time
folio->_deferred_list is not empty, but even the "right" lock does nothing
to secure the folio and the list it is on.
Fortunately, deferred_split_scan() is careful to use folio_try_get(): so
folio_migrate_mapping() can avoid the race by folio_undo_large_rmappable()
while the old folio's reference count is temporarily frozen to 0 - adding
such a freeze in the !mapping case too (originally, folio lock and
unmapping and no swap cache left an anon folio unreachable, so no freezing
was needed there: but the deferred split queue offers a way to reach it).
Link: https://lkml.kernel.org/r/29c83d1a-11ca-b6c9-f92e-6ccb322af510@google.com
Fixes: 9bcef5973e ("mm: memcg: fix split queue list crash when large folio migration")
Signed-off-by: Hugh Dickins <hughd@google.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Cc: Barry Song <baohua@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yang Shi <shy828301@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move out the legacy cgroup v1 socket memory accounting code into
mm/memcontrol-v1.c.
This commit introduces three new functions: memcg1_tcpmem_active(),
memcg1_charge_skmem() and memcg1_uncharge_skmem(), which contain all
cgroup v1-specific code and become trivial if CONFIG_MEMCG_V1 isn't set.
Note, that !!memcg->tcpmem_pressure check in
mem_cgroup_under_socket_pressure() can't be easily moved into
memcontrol-v1.h without including memcontrol-v1.h from memcontrol.h which
isn't a good idea, so it's better to just #ifdef it.
Link: https://lkml.kernel.org/r/20240628210317.272856-3-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: memcg: put cgroup v1-specific memcg data under
CONFIG_MEMCG_V1".
This patchset puts all cgroup v1's members of struct mem_cgroup, struct
mem_cgroup_per_node and struct task_struct under the CONFIG_MEMCG_V1
config option. If cgroup v1 support is not required (and it's true for
many cgroup users these days), it allows to save a bit of memory and
compile out some code, some of which is on relatively hot paths. It also
structures the code a bit better by grouping cgroup v1-specific stuff in
one place.
This patch (of 9):
memcg_account_kmem() consists of a trivial statistics change via
mod_memcg_state() call and a relatively large memcg1-specific part.
Let's factor out the mod_memcg_state() call and move the rest into the
mm/memcontrol-v1.c file. Also rename memcg_account_kmem() into
memcg1_account_kmem() for consistency.
Link: https://lkml.kernel.org/r/20240628210317.272856-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20240628210317.272856-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Allow proactive reclaimers to submit an additional swappiness=<val>
argument to memory.reclaim. This overrides the global or per-memcg
swappiness setting for that reclaim attempt.
For example:
echo "2M swappiness=0" > /sys/fs/cgroup/memory.reclaim
will perform reclaim on the rootcg with a swappiness setting of 0 (no
swap) regardless of the vm.swappiness sysctl setting.
Userspace proactive reclaimers use the memory.reclaim interface to trigger
reclaim. The memory.reclaim interface does not allow for any way to
effect the balance of file vs anon during proactive reclaim. The only
approach is to adjust the vm.swappiness setting. However, there are a few
reasons we look to control the balance of file vs anon during proactive
reclaim, separately from reactive reclaim:
* Swapout should be limited to manage SSD write endurance. In near-OOM
situations we are fine with lots of swap-out to avoid OOMs. As these
are typically rare events, they have relatively little impact on write
endurance. However, proactive reclaim runs continuously and so its
impact on SSD write endurance is more significant. Therefore it is
desireable to control swap-out for proactive reclaim separately from
reactive reclaim
* Some userspace OOM killers like systemd-oomd[1] support OOM killing on
swap exhaustion. This makes sense if the swap exhaustion is triggered
due to reactive reclaim but less so if it is triggered due to proactive
reclaim (e.g. one could see OOMs when free memory is ample but anon is
just particularly cold). Therefore, it's desireable to have proactive
reclaim reduce or stop swap-out before the threshold at which OOM
killing occurs.
In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness
before writes to memory.reclaim[2]. This has been in production for
nearly two years and has addressed our needs to control proactive vs
reactive reclaim behavior but is still not ideal for a number of reasons:
* vm.swappiness is a global setting, adjusting it can race/interfere
with other system administration that wishes to control vm.swappiness.
In our case, we need to disable Senpai before adjusting vm.swappiness.
* vm.swappiness is stateful - so a crash or restart of Senpai can leave
a misconfigured setting. This requires some additional management to
record the "desired" setting and ensure Senpai always adjusts to it.
With this patch, we avoid these downsides of adjusting vm.swappiness
globally.
[1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html
[2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598
Link: https://lkml.kernel.org/r/20240103164841.2800183-3-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Suggested-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yue Zhao <findns94@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Put legacy cgroup v1 memory controller code under a new CONFIG_MEMCG_V1
config option. The option is turned off by default. Nobody except those
who are still using cgroup v1 should turn it on.
If the option is not set, memory controller can still be mounted under
cgroup v1, but none of memcg-specific control files are present.
Please note, that not all cgroup v1's memory controller code is guarded
yet (but most of it), it's a subject for some follow-up work.
Thanks to Michal Hocko for providing a better Kconfig option description.
[roman.gushchin@linux.dev: better config option description provided by Michal]
Link: https://lkml.kernel.org/r/ZnxXNtvqllc9CDoo@google.com
Link: https://lkml.kernel.org/r/20240625005906.106920-14-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Soft limits are cgroup v1-specific and are not supported by cgroup v2, so
let's move the corresponding code into memcontrol-v1.c.
Aside from simple moving the code, this commits introduces a trivial
memcg1_soft_limit_reset() function to reset soft limits and also moves the
global soft limit tree initialization code into a new memcg1_init()
function.
It also moves corresponding declarations shared between memcontrol.c and
memcontrol-v1.c into mm/memcontrol-v1.h.
Link: https://lkml.kernel.org/r/20240625005906.106920-3-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently we use one swap_address_space for every 64M chunk to reduce lock
contention, this is like having a set of smaller swap files inside one
swap device. But when doing swap cache look up or insert, we are still
using the offset of the whole large swap device. This is OK for
correctness, as the offset (key) is unique.
But Xarray is specially optimized for small indexes, it creates the radix
tree levels lazily to be just enough to fit the largest key stored in one
Xarray. So we are wasting tree nodes unnecessarily.
For 64M chunk it should only take at most 3 levels to contain everything.
But if we are using the offset from the whole swap device, the offset
(key) value will be way beyond 64M, and so will the tree level.
Optimize this by using a new helper swap_cache_index to get a swap entry's
unique offset in its own 64M swap_address_space.
I see a ~1% performance gain in benchmark and actual workload with high
memory pressure.
Test with `time memhog 128G` inside a 8G memcg using 128G swap (ramdisk
with SWP_SYNCHRONOUS_IO dropped, tested 3 times, results are stable. The
test result is similar but the improvement is smaller if
SWP_SYNCHRONOUS_IO is enabled, as swap out path can never skip swap
cache):
Before:
6.07user 250.74system 4:17.26elapsed 99%CPU (0avgtext+0avgdata 8373376maxresident)k
0inputs+0outputs (55major+33555018minor)pagefaults 0swaps
After (1.8% faster):
6.08user 246.09system 4:12.58elapsed 99%CPU (0avgtext+0avgdata 8373248maxresident)k
0inputs+0outputs (54major+33555027minor)pagefaults 0swaps
Similar result with MySQL and sysbench using swap:
Before:
94055.61 qps
After (0.8% faster):
94834.91 qps
Radix tree slab usage is also very slightly lower.
Link: https://lkml.kernel.org/r/20240521175854.96038-12-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Reviewed-by: "Huang, Ying" <ying.huang@intel.com>
Cc: Anna Schumaker <anna@kernel.org>
Cc: Barry Song <v-songbaohua@oppo.com>
Cc: Chao Yu <chao@kernel.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jaegeuk Kim <jaegeuk@kernel.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Marc Dionne <marc.dionne@auristor.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: NeilBrown <neilb@suse.de>
Cc: Ryan Roberts <ryan.roberts@arm.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Cc: Trond Myklebust <trond.myklebust@hammerspace.com>
Cc: Xiubo Li <xiubli@redhat.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When testing shmem swapin, I encountered the warning below on my machine.
The reason is that replacing an old shmem folio with a new one causes
mem_cgroup_migrate() to clear the old folio's memcg data. As a result,
the old folio cannot get the correct memcg's lruvec needed to remove
itself from the LRU list when it is being freed. This could lead to
possible serious problems, such as LRU list crashes due to holding the
wrong LRU lock, and incorrect LRU statistics.
To fix this issue, we can fallback to use the mem_cgroup_replace_folio()
to replace the old shmem folio.
[ 5241.100311] page: refcount:0 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x5d9960
[ 5241.100317] head: order:4 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0
[ 5241.100319] flags: 0x17fffe0000040068(uptodate|lru|head|swapbacked|node=0|zone=2|lastcpupid=0x3ffff)
[ 5241.100323] raw: 17fffe0000040068 fffffdffd6687948 fffffdffd69ae008 0000000000000000
[ 5241.100325] raw: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
[ 5241.100326] head: 17fffe0000040068 fffffdffd6687948 fffffdffd69ae008 0000000000000000
[ 5241.100327] head: 0000000000000000 0000000000000000 00000000ffffffff 0000000000000000
[ 5241.100328] head: 17fffe0000000204 fffffdffd6665801 ffffffffffffffff 0000000000000000
[ 5241.100329] head: 0000000a00000010 0000000000000000 00000000ffffffff 0000000000000000
[ 5241.100330] page dumped because: VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled())
[ 5241.100338] ------------[ cut here ]------------
[ 5241.100339] WARNING: CPU: 19 PID: 78402 at include/linux/memcontrol.h:775 folio_lruvec_lock_irqsave+0x140/0x150
[...]
[ 5241.100374] pc : folio_lruvec_lock_irqsave+0x140/0x150
[ 5241.100375] lr : folio_lruvec_lock_irqsave+0x138/0x150
[ 5241.100376] sp : ffff80008b38b930
[...]
[ 5241.100398] Call trace:
[ 5241.100399] folio_lruvec_lock_irqsave+0x140/0x150
[ 5241.100401] __page_cache_release+0x90/0x300
[ 5241.100404] __folio_put+0x50/0x108
[ 5241.100406] shmem_replace_folio+0x1b4/0x240
[ 5241.100409] shmem_swapin_folio+0x314/0x528
[ 5241.100411] shmem_get_folio_gfp+0x3b4/0x930
[ 5241.100412] shmem_fault+0x74/0x160
[ 5241.100414] __do_fault+0x40/0x218
[ 5241.100417] do_shared_fault+0x34/0x1b0
[ 5241.100419] do_fault+0x40/0x168
[ 5241.100420] handle_pte_fault+0x80/0x228
[ 5241.100422] __handle_mm_fault+0x1c4/0x440
[ 5241.100424] handle_mm_fault+0x60/0x1f0
[ 5241.100426] do_page_fault+0x120/0x488
[ 5241.100429] do_translation_fault+0x4c/0x68
[ 5241.100431] do_mem_abort+0x48/0xa0
[ 5241.100434] el0_da+0x38/0xc0
[ 5241.100436] el0t_64_sync_handler+0x68/0xc0
[ 5241.100437] el0t_64_sync+0x14c/0x150
[ 5241.100439] ---[ end trace 0000000000000000 ]---
[baolin.wang@linux.alibaba.com: remove less helpful comments, per Matthew]
Link: https://lkml.kernel.org/r/ccad3fe1375b468ebca3227b6b729f3eaf9d8046.1718423197.git.baolin.wang@linux.alibaba.com
Link: https://lkml.kernel.org/r/3c11000dd6c1df83015a8321a859e9775ebbc23e.1718266112.git.baolin.wang@linux.alibaba.com
Fixes: 85ce2c517a ("memcontrol: only transfer the memcg data for migration")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The assert was introduced in the commit cited below as an insurance that
the semantic is the same after the local_irq_save() has been removed and
the function has been made static.
The original requirement to disable interrupt was due the modification
of per-CPU counters which require interrupts to be disabled because the
counter update operation is not atomic and some of the counters are
updated from interrupt context.
All callers of __mod_objcg_mlstate() acquire a lock
(memcg_stock.stock_lock) which disables interrupts on !PREEMPT_RT and
the lockdep assert is satisfied. On PREEMPT_RT the interrupts are not
disabled and the assert triggers.
The safety of the counter update is already ensured by
VM_WARN_ON_IRQS_ENABLED() which is part of __mod_memcg_lruvec_state() and
does not require yet another check.
Remove the lockdep assert from __mod_objcg_mlstate().
Link: https://lkml.kernel.org/r/20240528141341.rz_rytN_@linutronix.de
Fixes: 91882c1617 ("memcg: simple cleanup of stats update functions")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A memcg pointer in the per-cpu stock can be accessed by
drain_all_stock() and consume_stock() in parallel, causing a potential
race, which is believed to e harmless.
KCSAN shows this data-race clearly in the splat below:
BUG: KCSAN: data-race in drain_all_stock.part.0 / try_charge_memcg
write to 0xffff88903f8b0788 of 4 bytes by task 35901 on cpu 2:
try_charge_memcg (mm/memcontrol.c:2323 mm/memcontrol.c:2746)
__mem_cgroup_charge (mm/memcontrol.c:7287 mm/memcontrol.c:7301)
do_anonymous_page (mm/memory.c:1054 mm/memory.c:4375 mm/memory.c:4433)
__handle_mm_fault (mm/memory.c:3878 mm/memory.c:5300 mm/memory.c:5441)
handle_mm_fault (mm/memory.c:5606)
do_user_addr_fault (arch/x86/mm/fault.c:1363)
exc_page_fault (./arch/x86/include/asm/irqflags.h:37
./arch/x86/include/asm/irqflags.h:72
arch/x86/mm/fault.c:1513
arch/x86/mm/fault.c:1563)
asm_exc_page_fault (./arch/x86/include/asm/idtentry.h:623)
read to 0xffff88903f8b0788 of 4 bytes by task 287 on cpu 27:
drain_all_stock.part.0 (mm/memcontrol.c:2433)
mem_cgroup_css_offline (mm/memcontrol.c:5398 mm/memcontrol.c:5687)
css_killed_work_fn (kernel/cgroup/cgroup.c:5521 kernel/cgroup/cgroup.c:5794)
process_one_work (kernel/workqueue.c:3254)
worker_thread (kernel/workqueue.c:3329 kernel/workqueue.c:3416)
kthread (kernel/kthread.c:388)
ret_from_fork (arch/x86/kernel/process.c:147)
ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
value changed: 0x00000014 -> 0x00000013
This happens because drain_all_stock() is reading stock->nr_pages, while
consume_stock() might be updating the same address, causing a potential
data-race.
Make the shared addresses bulletproof regarding to reads and writes,
similarly to what stock->cached_objcg and stock->cached.
Annotate all accesses to stock->nr_pages with READ_ONCE()/WRITE_ONCE().
Link: https://lkml.kernel.org/r/20240501095420.679208-1-leitao@debian.org
Signed-off-by: Breno Leitao <leitao@debian.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
At the moment, the amount of memory allocated for stats related structs in
the mem_cgroup corresponds to the size of enum node_stat_item. However
not all fields in enum node_stat_item have corresponding memcg stats. So,
let's use indirection mechanism similar to the one used for memcg vmstats
management.
For a given x86_64 config, the size of stats with and without patch is:
structs size in bytes w/o with
struct lruvec_stats 1128 648
struct lruvec_stats_percpu 752 432
struct memcg_vmstats 1832 1352
struct memcg_vmstats_percpu 1280 960
The memory savings are further compounded by the fact that these structs
are allocated for each cpu and for each node. To be precise, for each
memcg the memory saved would be:
Memory saved = ((21 * 3 * NR_NODES) + (21 * 2 * NR_NODES * NR_CPUS) +
(21 * 3) + (21 * 2 * NR_CPUS)) * sizeof(long)
Where 21 is the number of fields eliminated.
Link: https://lkml.kernel.org/r/20240501172617.678560-5-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: T.J. Mercier <tjmercier@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "memcg: reduce memory consumption by memcg stats", v4.
Most of the memory overhead of a memcg object is due to memcg stats
maintained by the kernel. Since stats updates happen in performance
critical codepaths, the stats are maintained per-cpu and numa specific
stats are maintained per-node * per-cpu. This drastically increase the
overhead on large machines i.e. large of CPUs and multiple numa nodes.
This patch series tries to reduce the overhead by at least not allocating
the memory for stats which are not memcg specific.
This patch (of 8):
mem_cgroup_events_index is a translation table to get the right index of
the memcg relevant entry for the general vm_event_item. At the moment, it
is defined as integer array. However on a typical system the max entry of
vm_event_item (NR_VM_EVENT_ITEMS) is 113, so we don't need to use int as
storage type of the array. For now just use int8_t as type and add a
BUILD_BUG_ON().
Another benefit of this change is that the translation table fits in 2
cachelines while previously it would require 8 cachelines (assuming 64
bytes cacheline).
Link: https://lkml.kernel.org/r/20240501172617.678560-1-shakeel.butt@linux.dev
Link: https://lkml.kernel.org/r/20240501172617.678560-2-shakeel.butt@linux.dev
Signed-off-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Roman Gushchin <roman.gushchin@linux.dev>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: T.J. Mercier <tjmercier@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
A data-race issue in memcg rstat occurs when two distinct code paths
access the same 4-byte region concurrently. KCSAN detection triggers the
following BUG as a result.
BUG: KCSAN: data-race in __count_memcg_events / mem_cgroup_css_rstat_flush
write to 0xffffe8ffff98e300 of 4 bytes by task 5274 on cpu 17:
mem_cgroup_css_rstat_flush (mm/memcontrol.c:5850)
cgroup_rstat_flush_locked (kernel/cgroup/rstat.c:243 (discriminator 7))
cgroup_rstat_flush (./include/linux/spinlock.h:401 kernel/cgroup/rstat.c:278)
mem_cgroup_flush_stats.part.0 (mm/memcontrol.c:767)
memory_numa_stat_show (mm/memcontrol.c:6911)
<snip>
read to 0xffffe8ffff98e300 of 4 bytes by task 410848 on cpu 27:
__count_memcg_events (mm/memcontrol.c:725 mm/memcontrol.c:962)
count_memcg_event_mm.part.0 (./include/linux/memcontrol.h:1097 ./include/linux/memcontrol.h:1120)
handle_mm_fault (mm/memory.c:5483 mm/memory.c:5622)
<snip>
value changed: 0x00000029 -> 0x00000000
The race occurs because two code paths access the same "stats_updates"
location. Although "stats_updates" is a per-CPU variable, it is remotely
accessed by another CPU at
cgroup_rstat_flush_locked()->mem_cgroup_css_rstat_flush(), leading to the
data race mentioned.
Considering that memcg_rstat_updated() is in the hot code path, adding a
lock to protect it may not be desirable, especially since this variable
pertains solely to statistics.
Therefore, annotating accesses to stats_updates with READ/WRITE_ONCE() can
prevent KCSAN splats and potential partial reads/writes.
Link: https://lkml.kernel.org/r/20240424125940.2410718-1-leitao@debian.org
Fixes: 9cee7e8ef3 ("mm: memcg: optimize parent iteration in memcg_rstat_updated()")
Signed-off-by: Breno Leitao <leitao@debian.org>
Suggested-by: Shakeel Butt <shakeel.butt@linux.dev>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>