commit 61399e0c54 upstream.
RCU re-initializes the deferred QS irq work everytime before attempting
to queue it. However there are situations where the irq work is
attempted to be queued even though it is already queued. In that case
re-initializing messes-up with the irq work queue that is about to be
handled.
The chances for that to happen are higher when the architecture doesn't
support self-IPIs and irq work are then all lazy, such as with the
following sequence:
1) rcu_read_unlock() is called when IRQs are disabled and there is a
grace period involving blocked tasks on the node. The irq work
is then initialized and queued.
2) The related tasks are unblocked and the CPU quiescent state
is reported. rdp->defer_qs_iw_pending is reset to DEFER_QS_IDLE,
allowing the irq work to be requeued in the future (note the previous
one hasn't fired yet).
3) A new grace period starts and the node has blocked tasks.
4) rcu_read_unlock() is called when IRQs are disabled again. The irq work
is re-initialized (but it's queued! and its node is cleared) and
requeued. Which means it's requeued to itself.
5) The irq work finally fires with the tick. But since it was requeued
to itself, it loops and hangs.
Fix this with initializing the irq work only once before the CPU boots.
Fixes: b41642c877 ("rcu: Fix rcu_read_unlock() deadloop due to IRQ work")
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202508071303.c1134cce-lkp@intel.com
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Joel Fernandes <joelagnelf@nvidia.com>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.upadhyay@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit b41642c877 ]
During rcu_read_unlock_special(), if this happens during irq_exit(), we
can lockup if an IPI is issued. This is because the IPI itself triggers
the irq_exit() path causing a recursive lock up.
This is precisely what Xiongfeng found when invoking a BPF program on
the trace_tick_stop() tracepoint As shown in the trace below. Fix by
managing the irq_work state correctly.
irq_exit()
__irq_exit_rcu()
/* in_hardirq() returns false after this */
preempt_count_sub(HARDIRQ_OFFSET)
tick_irq_exit()
tick_nohz_irq_exit()
tick_nohz_stop_sched_tick()
trace_tick_stop() /* a bpf prog is hooked on this trace point */
__bpf_trace_tick_stop()
bpf_trace_run2()
rcu_read_unlock_special()
/* will send a IPI to itself */
irq_work_queue_on(&rdp->defer_qs_iw, rdp->cpu);
A simple reproducer can also be obtained by doing the following in
tick_irq_exit(). It will hang on boot without the patch:
static inline void tick_irq_exit(void)
{
+ rcu_read_lock();
+ WRITE_ONCE(current->rcu_read_unlock_special.b.need_qs, true);
+ rcu_read_unlock();
+
Reported-by: Xiongfeng Wang <wangxiongfeng2@huawei.com>
Closes: https://lore.kernel.org/all/9acd5f9f-6732-7701-6880-4b51190aa070@huawei.com/
Tested-by: Qi Xi <xiqi2@huawei.com>
Signed-off-by: Joel Fernandes <joelagnelf@nvidia.com>
Reviewed-by: "Paul E. McKenney" <paulmck@kernel.org>
Reported-by: Linux Kernel Functional Testing <lkft@linaro.org>
[neeraj: Apply Frederic's suggested fix for PREEMPT_RT]
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.upadhyay@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 90c09d57ca ]
On kernels built with CONFIG_IRQ_WORK=y, when rcu_read_unlock() is
invoked within an interrupts-disabled region of code [1], it will invoke
rcu_read_unlock_special(), which uses an irq-work handler to force the
system to notice when the RCU read-side critical section actually ends.
That end won't happen until interrupts are enabled at the soonest.
In some kernels, such as those booted with rcutree.use_softirq=y, the
irq-work handler is used unconditionally.
The per-CPU rcu_data structure's ->defer_qs_iw_pending field is
updated by the irq-work handler and is both read and updated by
rcu_read_unlock_special(). This resulted in the following KCSAN splat:
------------------------------------------------------------------------
BUG: KCSAN: data-race in rcu_preempt_deferred_qs_handler / rcu_read_unlock_special
read to 0xffff96b95f42d8d8 of 1 bytes by task 90 on cpu 8:
rcu_read_unlock_special+0x175/0x260
__rcu_read_unlock+0x92/0xa0
rt_spin_unlock+0x9b/0xc0
__local_bh_enable+0x10d/0x170
__local_bh_enable_ip+0xfb/0x150
rcu_do_batch+0x595/0xc40
rcu_cpu_kthread+0x4e9/0x830
smpboot_thread_fn+0x24d/0x3b0
kthread+0x3bd/0x410
ret_from_fork+0x35/0x40
ret_from_fork_asm+0x1a/0x30
write to 0xffff96b95f42d8d8 of 1 bytes by task 88 on cpu 8:
rcu_preempt_deferred_qs_handler+0x1e/0x30
irq_work_single+0xaf/0x160
run_irq_workd+0x91/0xc0
smpboot_thread_fn+0x24d/0x3b0
kthread+0x3bd/0x410
ret_from_fork+0x35/0x40
ret_from_fork_asm+0x1a/0x30
no locks held by irq_work/8/88.
irq event stamp: 200272
hardirqs last enabled at (200272): [<ffffffffb0f56121>] finish_task_switch+0x131/0x320
hardirqs last disabled at (200271): [<ffffffffb25c7859>] __schedule+0x129/0xd70
softirqs last enabled at (0): [<ffffffffb0ee093f>] copy_process+0x4df/0x1cc0
softirqs last disabled at (0): [<0000000000000000>] 0x0
------------------------------------------------------------------------
The problem is that irq-work handlers run with interrupts enabled, which
means that rcu_preempt_deferred_qs_handler() could be interrupted,
and that interrupt handler might contain an RCU read-side critical
section, which might invoke rcu_read_unlock_special(). In the strict
KCSAN mode of operation used by RCU, this constitutes a data race on
the ->defer_qs_iw_pending field.
This commit therefore disables interrupts across the portion of the
rcu_preempt_deferred_qs_handler() that updates the ->defer_qs_iw_pending
field. This suffices because this handler is not a fast path.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.upadhyay@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit fcf0e25ad4 ]
rcu_read_unlock_strict() can be called with preemption enabled
which can make for an unstable rdp and a racy norm value.
Fix this by dropping the preempt-count in __rcu_read_unlock()
after the call to rcu_read_unlock_strict(), adjusting the
preempt-count check appropriately.
Suggested-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 83b28cfe79 ]
With PREEMPT_RCU=n, cond_resched() provides urgently needed quiescent
states for read-side critical sections via rcu_all_qs().
One reason why this was needed: lacking preempt-count, the tick
handler has no way of knowing whether it is executing in a
read-side critical section or not.
With (PREEMPT_LAZY=y, PREEMPT_DYNAMIC=n), we get (PREEMPT_COUNT=y,
PREEMPT_RCU=n). In this configuration cond_resched() is a stub and
does not provide quiescent states via rcu_all_qs().
(PREEMPT_RCU=y provides this information via rcu_read_unlock() and
its nesting counter.)
So, use the availability of preempt_count() to report quiescent states
in rcu_flavor_sched_clock_irq().
Suggested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
The context_tracking.state RCU_DYNTICKS subvariable has been renamed to
RCU_WATCHING, replace "dyntick_idle" into "eqs" to drop the dyntick
reference.
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
The barrier_mutex is used currently to protect (de-)offloading
operations and prevent from nocb_lock locking imbalance in rcu_barrier()
and shrinker, and also from misordered RCU barrier invocation.
Now since RCU (de-)offloading is going to happen on offline CPUs, an RCU
barrier will have to be executed while transitionning from offloaded to
de-offloaded state. And this can't happen while holding the
barrier_mutex.
Introduce a NOCB mutex to protect (de-)offloading transitions. The
barrier_mutex is still held for now when necessary to avoid barrier
callbacks reordering and nocb_lock imbalance.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
Checking for races against concurrent (de-)offloading implies the
creation of !CONFIG_RCU_NOCB_CPU stubs to check if each relevant lock
is held. For now this only implies the nocb_lock but more are to be
expected.
Create instead a NOCB specific version of RCU_LOCKDEP_WARN() to avoid
the proliferation of stubs.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Neeraj Upadhyay <neeraj.upadhyay@kernel.org>
If a CPU is running either a userspace application or a guest OS in
nohz_full mode, it is possible for a system call to occur just as an
RCU grace period is starting. If that CPU also has the scheduling-clock
tick enabled for any reason (such as a second runnable task), and if the
system was booted with rcutree.use_softirq=0, then RCU can add insult to
injury by awakening that CPU's rcuc kthread, resulting in yet another
task and yet more OS jitter due to switching to that task, running it,
and switching back.
In addition, in the common case where that system call is not of
excessively long duration, awakening the rcuc task is pointless.
This pointlessness is due to the fact that the CPU will enter an extended
quiescent state upon returning to the userspace application or guest OS.
In this case, the rcuc kthread cannot do anything that the main RCU
grace-period kthread cannot do on its behalf, at least if it is given
a few additional milliseconds (for example, given the time duration
specified by rcutree.jiffies_till_first_fqs, give or take scheduling
delays).
This commit therefore adds a rcutree.nohz_full_patience_delay kernel
boot parameter that specifies the grace period age (in milliseconds,
rounded to jiffies) before which RCU will refrain from awakening the
rcuc kthread. Preliminary experimentation suggests a value of 1000,
that is, one second. Increasing rcutree.nohz_full_patience_delay will
increase grace-period latency and in turn increase memory footprint,
so systems with constrained memory might choose a smaller value.
Systems with less-aggressive OS-jitter requirements might choose the
default value of zero, which keeps the traditional immediate-wakeup
behavior, thus avoiding increases in grace-period latency.
[ paulmck: Apply Leonardo Bras feedback. ]
Link: https://lore.kernel.org/all/20240328171949.743211-1-leobras@redhat.com/
Reported-by: Leonardo Bras <leobras@redhat.com>
Suggested-by: Leonardo Bras <leobras@redhat.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Leonardo Bras <leobras@redhat.com>
Upon NOCB deoffloading, the rcuo kthread must be forced to sleep
until the corresponding rdp is ever offloaded again. The deoffloader
clears the SEGCBLIST_OFFLOADED flag, wakes up the rcuo kthread which
then notices that change and clears in turn its SEGCBLIST_KTHREAD_CB
flag before going to sleep, until it ever sees the SEGCBLIST_OFFLOADED
flag again, should a re-offloading happen.
Upon NOCB offloading, the rcuo kthread must be forced to wake up and
handle callbacks until the corresponding rdp is ever deoffloaded again.
The offloader sets the SEGCBLIST_OFFLOADED flag, wakes up the rcuo
kthread which then notices that change and sets in turn its
SEGCBLIST_KTHREAD_CB flag before going to check callbacks, until it
ever sees the SEGCBLIST_OFFLOADED flag cleared again, should a
de-offloading happen again.
This is all a crude ad-hoc and error-prone kthread (un-)parking
re-implementation.
Consolidate the behaviour with the appropriate API instead.
[ paulmck: Apply Qiang Zhang feedback provided in Link: below. ]
Link: https://lore.kernel.org/all/20240509074046.15629-1-qiang.zhang1211@gmail.com/
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently, there are rcu_data structure fields named ->rcu_onl_gp_seq
and ->rcu_ofl_gp_seq that track the rcu_state.gp_flags field at the
time of the corresponding CPU's last online or offline operation,
respectively. However, this information is not particularly useful.
It would be better to instead track the grace period state kept
in rcu_state.gp_state. This would also be consistent with the
initialization in rcu_boot_init_percpu_data(), which is to RCU_GP_CLEANED
(an rcu_state.gp_state value), and also with the diagnostics in
rcu_implicit_dynticks_qs(), whose format is consistent with an integer,
not a bitmask.
This commit therefore makes this change and changes the names to
->rcu_onl_gp_flags and ->rcu_ofl_gp_flags, respectively.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Affine the parallel expedited gp kworkers to their respective RCU node
in order to make them close to the cache their are playing with.
This reuses the boost kthreads machinery that probe into CPU hotplug
operations such that the kthreads become/stay affine to their respective
node as soon/long as they contain online CPUs. Otherwise and if the
current CPU going down was the last online on the leaf node, the related
kthread is affine to the housekeeping CPUs.
In the long run, this affinity VS CPU hotplug operation game should
probably be implemented at the generic kthread level.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
[boqun: s/* rcu_boost_task/*rcu_boost_task as reported by checkpatch]
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
When CONFIG_RCU_EXP_KTHREAD=n, the expedited grace period per node
initialization is performed in parallel via workqueues (one work per
node).
However in CONFIG_RCU_EXP_KTHREAD=y, this per node initialization is
performed by a single kworker serializing each node initialization (one
work for all nodes).
The second part is certainly less scalable and efficient beyond a single
leaf node.
To improve this, expand this single kworker into per-node kworkers. This
new layout is eventually intended to remove the workqueues based
implementation since it will essentially now become duplicate code.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
This mutex is currently protecting per node boost kthreads creation and
affinity setting across CPU hotplug operations.
Since the expedited kworkers will soon be split per node as well, they
will be subject to the same concurrency constraints against hotplug.
Therefore their creation and affinity tuning operations will be grouped
with those of boost kthreads and then rely on the same mutex.
To prepare for that, generalize its name.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
The per-CPU rcu_data structure's ->cpu_no_qs.b.exp field is updated
only on the instance corresponding to the current CPU, but can be read
more widely. Unmarked accesses are OK from the corresponding CPU, but
only if interrupts are disabled, given that interrupt handlers can and
do modify this field.
Unfortunately, although the load from rcu_preempt_deferred_qs() is always
carried out from the corresponding CPU, interrupts are not necessarily
disabled. This commit therefore upgrades this load to READ_ONCE.
Similarly, the diagnostic access from synchronize_rcu_expedited_wait()
might run with interrupts disabled and from some other CPU. This commit
therefore marks this load with data_race().
Finally, the C-language access in rcu_preempt_ctxt_queue() is OK as
is because interrupts are disabled and this load is always from the
corresponding CPU. This commit adds a comment giving the rationale for
this access being safe.
This data race was reported by KCSAN. Not appropriate for backporting
due to failure being unlikely.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Once either rcutree_online_cpu() or rcutree_dead_cpu() is invoked
concurrently, the following rcu_boost_kthread_setaffinity() race can
occur:
CPU 1 CPU2
mask = rcu_rnp_online_cpus(rnp);
...
mask = rcu_rnp_online_cpus(rnp);
...
set_cpus_allowed_ptr(t, cm);
set_cpus_allowed_ptr(t, cm);
This results in CPU2's update being overwritten by that of CPU1, and
thus the possibility of ->boost_kthread_task continuing to run on a
to-be-offlined CPU.
This commit therefore eliminates this race by relying on the pre-existing
acquisition of ->boost_kthread_mutex to serialize the full process of
changing the affinity of ->boost_kthread_task.
Signed-off-by: Pingfan Liu <kernelfans@gmail.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: "Jason A. Donenfeld" <Jason@zx2c4.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Userspace execution is a valid quiescent state for RCU Tasks Trace,
but the scheduling-clock interrupt does not currently report such
quiescent states.
Of course, the scheduling-clock interrupt is not strictly speaking
userspace execution. However, the only way that this code is not
in a quiescent state is if something invoked rcu_read_lock_trace(),
and that would be reflected in the ->trc_reader_nesting field in
the task_struct structure. Furthermore, this field is checked by
rcu_tasks_trace_qs(), which is invoked by rcu_tasks_qs() which is in
turn invoked by rcu_note_voluntary_context_switch() in kernels building
at least one of the RCU Tasks flavors. It is therefore safe to invoke
rcu_tasks_trace_qs() from the rcu_sched_clock_irq().
But rcu_tasks_qs() also invokes rcu_tasks_classic_qs() for RCU
Tasks, which lacks the read-side markers provided by RCU Tasks Trace.
This raises the possibility that an RCU Tasks grace period could start
after the interrupt from userspace execution, but before the call to
rcu_sched_clock_irq(). However, it turns out that this is safe because
the RCU Tasks grace period waits for an RCU grace period, which will
wait for the entire scheduling-clock interrupt handler, including any
RCU Tasks read-side critical section that this handler might contain.
This commit therefore updates the rcu_sched_clock_irq() function's
check for usermode execution and its call to rcu_tasks_classic_qs()
to instead check for both usermode execution and interrupt from idle,
and to instead call rcu_note_voluntary_context_switch(). This
consolidates code and provides more faster RCU Tasks Trace
reporting of quiescent states in kernels that do scheduling-clock
interrupts for userspace execution.
[ paulmck: Consolidate checks into rcu_sched_clock_irq(). ]
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_boost_kthread_setaffinity() function removes the outgoing CPU
from the set_cpus_allowed() mask for the corresponding leaf rcu_node
structure's rcub priority-boosting kthread. Except that if the outgoing
CPU will leave that structure without any online CPUs, the mask is set
to the housekeeping CPU mask from housekeeping_cpumask(). Which is fine
unless the outgoing CPU happens to be a housekeeping CPU.
This commit therefore removes the outgoing CPU from the housekeeping mask.
This would of course be problematic if the outgoing CPU was the last
online housekeeping CPU, but in that case you are in a world of hurt
anyway. If someone comes up with a valid use case for a system needing
all the housekeeping CPUs to be offline, further adjustments can be made.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernels built with PREEMPT_RCU=y and RCU_STRICT_GRACE_PERIOD=y trigger
irq-work from rcu_read_unlock(), and the resulting irq-work handler
invokes rcu_preempt_deferred_qs_handle(). The point of this triggering
is to force grace periods to end quickly in order to give tools like KASAN
a better chance of detecting RCU usage bugs such as leaking RCU-protected
pointers out of an RCU read-side critical section.
However, this irq-work triggering is unconditional. This works, but
there is no point in doing this irq-work unless the current grace period
is waiting on the running CPU or task, which is not the common case.
After all, in the common case there are many rcu_read_unlock() calls
per CPU per grace period.
This commit therefore triggers the irq-work only when the current grace
period is waiting on the running CPU or task.
This change was tested as follows on a four-CPU system:
echo rcu_preempt_deferred_qs_handler > /sys/kernel/debug/tracing/set_ftrace_filter
echo 1 > /sys/kernel/debug/tracing/function_profile_enabled
insmod rcutorture.ko
sleep 20
rmmod rcutorture.ko
echo 0 > /sys/kernel/debug/tracing/function_profile_enabled
echo > /sys/kernel/debug/tracing/set_ftrace_filter
This procedure produces results in this per-CPU set of files:
/sys/kernel/debug/tracing/trace_stat/function*
Sample output from one of these files is as follows:
Function Hit Time Avg s^2
-------- --- ---- --- ---
rcu_preempt_deferred_qs_handle 838746 182650.3 us 0.217 us 0.004 us
The baseline sum of the "Hit" values (the number of calls to this
function) was 3,319,015. With this commit, that sum was 1,140,359,
for a 2.9x reduction. The worst-case variance across the CPUs was less
than 25%, so this large effect size is statistically significant.
The raw data is available in the Link: URL.
Link: https://lore.kernel.org/all/20220808022626.12825-1-qiang1.zhang@intel.com/
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Given that rcu_all_qs() is in non-preemptible kernels, why on earth should
it invoke preempt_disable()? This commit adds the reason, which is to
work nicely with debugging enabled in CONFIG_PREEMPT_COUNT=y kernels.
Reported-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reported-by: Boqun Feng <boqun.feng@gmail.com>
Reported-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In non-premptible kernels, tasks never do context switches within
RCU read-side critical sections. Therefore, in such kernels, each
leaf rcu_node structure's ->blkd_tasks list will always be empty.
The comment on the non-preemptible version of rcu_preempt_deferred_qs()
confuses this point, so this commit therefore fixes it.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Kernels built with CONFIG_PREEMPT=n and CONFIG_RCU_STRICT_GRACE_PERIOD=y
report the quiescent state directly from the outermost rcu_read_unlock().
However, the current CPU's rcu_data structure's ->cpu_no_qs.b.norm
might still be set, in which case rcu_report_qs_rdp() will exit early,
thus failing to report quiescent state.
This commit therefore causes rcu_read_unlock_strict() to clear
CPU's rcu_data structure's ->cpu_no_qs.b.norm field before invoking
rcu_report_qs_rdp().
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Callbacks are invoked in RCU kthreads when calbacks are offloaded
(rcu_nocbs boot parameter) or when RCU's softirq handler has been
offloaded to rcuc kthreads (use_softirq==0). The current code allows
for the rcu_nocbs case but not the use_softirq case. This commit adds
support for the use_softirq case.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
The intent of the CONFIG_RCU_STRICT_GRACE_PERIOD Konfig option is to
cause normal grace periods to complete quickly in order to better catch
errors resulting from improperly leaking pointers from RCU read-side
critical sections. However, kernels built with this option enabled still
wait for some hundreds of milliseconds before boosting RCU readers that
have been preempted within their current critical section. The value
of this delay is set by the CONFIG_RCU_BOOST_DELAY Kconfig option,
which defaults to 500 milliseconds.
This commit therefore causes kernels build with strict grace periods
to ignore CONFIG_RCU_BOOST_DELAY. This causes rcu_initiate_boost()
to start boosting immediately after all CPUs on a given leaf rcu_node
structure have passed through their quiescent states.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Stop-machine recently started calling additional functions while waiting:
----------------------------------------------------------------
Former stop machine wait loop:
do {
cpu_relax(); => macro
...
} while (curstate != STOPMACHINE_EXIT);
-----------------------------------------------------------------
Current stop machine wait loop:
do {
stop_machine_yield(cpumask); => function (notraced)
...
touch_nmi_watchdog(); => function (notraced, inside calls also notraced)
...
rcu_momentary_dyntick_idle(); => function (notraced, inside calls traced)
} while (curstate != MULTI_STOP_EXIT);
------------------------------------------------------------------
These functions (and the functions that they call) must be marked
notrace to prevent them from being updated while they are executing.
The consequences of failing to mark these functions can be severe:
rcu: INFO: rcu_preempt detected stalls on CPUs/tasks:
rcu: 1-...!: (0 ticks this GP) idle=14f/1/0x4000000000000000 softirq=3397/3397 fqs=0
rcu: 3-...!: (0 ticks this GP) idle=ee9/1/0x4000000000000000 softirq=5168/5168 fqs=0
(detected by 0, t=8137 jiffies, g=5889, q=2 ncpus=4)
Task dump for CPU 1:
task:migration/1 state:R running task stack: 0 pid: 19 ppid: 2 flags:0x00000000
Stopper: multi_cpu_stop+0x0/0x18c <- stop_machine_cpuslocked+0x128/0x174
Call Trace:
Task dump for CPU 3:
task:migration/3 state:R running task stack: 0 pid: 29 ppid: 2 flags:0x00000000
Stopper: multi_cpu_stop+0x0/0x18c <- stop_machine_cpuslocked+0x128/0x174
Call Trace:
rcu: rcu_preempt kthread timer wakeup didn't happen for 8136 jiffies! g5889 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402
rcu: Possible timer handling issue on cpu=2 timer-softirq=594
rcu: rcu_preempt kthread starved for 8137 jiffies! g5889 f0x0 RCU_GP_WAIT_FQS(5) ->state=0x402 ->cpu=2
rcu: Unless rcu_preempt kthread gets sufficient CPU time, OOM is now expected behavior.
rcu: RCU grace-period kthread stack dump:
task:rcu_preempt state:I stack: 0 pid: 14 ppid: 2 flags:0x00000000
Call Trace:
schedule+0x56/0xc2
schedule_timeout+0x82/0x184
rcu_gp_fqs_loop+0x19a/0x318
rcu_gp_kthread+0x11a/0x140
kthread+0xee/0x118
ret_from_exception+0x0/0x14
rcu: Stack dump where RCU GP kthread last ran:
Task dump for CPU 2:
task:migration/2 state:R running task stack: 0 pid: 24 ppid: 2 flags:0x00000000
Stopper: multi_cpu_stop+0x0/0x18c <- stop_machine_cpuslocked+0x128/0x174
Call Trace:
This commit therefore marks these functions notrace:
rcu_preempt_deferred_qs()
rcu_preempt_need_deferred_qs()
rcu_preempt_deferred_qs_irqrestore()
[ paulmck: Apply feedback from Neeraj Upadhyay. ]
Signed-off-by: Patrick Wang <patrick.wang.shcn@gmail.com>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
This commit makes rcu_note_context_switch() unconditionally invoke the
rcu_tasks_qs() function, as opposed to doing so only when RCU (as opposed
to RCU Tasks Trace) urgently needs a grace period to end.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andrii Nakryiko <andrii@kernel.org>
Cc: Martin KaFai Lau <kafai@fb.com>
Cc: KP Singh <kpsingh@kernel.org>
When booting kernels built with both CONFIG_RCU_STRICT_GRACE_PERIOD=y
and CONFIG_PREEMPT_RT=y, the rcu_read_unlock_special() function's
invocation of irq_work_queue_on() the init_irq_work() causes the
rcu_preempt_deferred_qs_handler() function to work execute in SCHED_FIFO
irq_work kthreads. Because rcu_read_unlock_special() is invoked on each
rcu_read_unlock() in such kernels, the amount of work just keeps piling
up, resulting in a boot-time hang.
This commit therefore avoids this hang by using IRQ_WORK_INIT_HARD()
instead of init_irq_work(), but only in kernels built with both
CONFIG_PREEMPT_RT=y and CONFIG_RCU_STRICT_GRACE_PERIOD=y.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
For the spawning of the priority-boost kthreads can fail, improbable
though this might seem. This commit therefore refrains from attemoting
to initiate RCU priority boosting when The ->boost_kthread_task pointer
is NULL.
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Suppose we have a kernel built with both CONFIG_RCU_STRICT_GRACE_PERIOD=y
and CONFIG_PREEMPT=y. Suppose further that an RCU reader from which RCU
core needs a quiescent state ends in rcu_preempt_deferred_qs_irqrestore().
This function will then invoke rcu_report_qs_rdp() in order to immediately
report that quiescent state. Unfortunately, it will not have cleared
that reader's CPU's rcu_data structure's ->cpu_no_qs.b.norm field.
As a result, rcu_report_qs_rdp() will take an early exit because it
will believe that this CPU has not yet encountered a quiescent state,
and there will be no reporting of the current quiescent state.
This commit therefore causes rcu_preempt_deferred_qs_irqrestore() to
clear the ->cpu_no_qs.b.norm field before invoking rcu_report_qs_rdp().
Kudos to Boqun Feng and Neeraj Upadhyay for helping with analysis of
this issue!
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The rcu_spawn_gp_kthread() function is called as an early initcall,
which means that SMP initialization hasn't happened yet and only the
boot CPU is online. Therefore, create only the boost kthread for the
leaf node of the boot CPU.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Uladzislau Rezki <uladzislau.rezki@sony.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
Cc: Boqun Feng <boqun.feng@gmail.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Pull scheduler updates from Ingo Molnar:
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler
build, from the fast-headers tree - including placeholder *_api.h
headers for later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per
node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
* tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits)
sched/headers: ARM needs asm/paravirt_api_clock.h too
sched/numa: Fix boot crash on arm64 systems
headers/prep: Fix header to build standalone: <linux/psi.h>
sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
cgroup: Fix suspicious rcu_dereference_check() usage warning
sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers
sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
sched/deadline,rt: Remove unused functions for !CONFIG_SMP
sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
sched/deadline: Remove unused def_dl_bandwidth
sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
sched/tracing: Don't re-read p->state when emitting sched_switch event
sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
sched/cpuacct: Remove redundant RCU read lock
sched/cpuacct: Optimize away RCU read lock
sched/cpuacct: Fix charge percpu cpuusage
sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
...
In some places, RCU code calls cpumask_weight() to check if any bit of a
given cpumask is set. We can do it more efficiently with cpumask_empty()
because cpumask_empty() stops traversing the cpumask as soon as it finds
first set bit, while cpumask_weight() counts all bits unconditionally.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
As we handle parallel CPU bringup, we will need to take care to avoid
spawning multiple boost threads, or race conditions when setting their
affinity. Spotted by Paul McKenney.
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
The pattern "rdp->grpmask & rcu_rnp_online_cpus(rnp)" occurs frequently
in RCU code in order to determine whether rdp->cpu is online from an
RCU perspective. This commit therefore creates an rcu_rdp_cpu_online()
function to replace it.
[ paulmck: Apply kernel test robot unused-variable feedback. ]
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
When the rcutree.use_softirq kernel boot parameter is set to zero, all
RCU_SOFTIRQ processing is carried out by the per-CPU rcuc kthreads.
If these kthreads are being starved, quiescent states will not be
reported, which in turn means that the grace period will not end, which
can in turn trigger RCU CPU stall warnings. This commit therefore dumps
stack traces of stalled CPUs' rcuc kthreads, which can help identify
what is preventing those kthreads from running.
Suggested-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Reviewed-by: Ammar Faizi <ammarfaizi2@gnuweeb.org>
Signed-off-by: Zqiang <qiang1.zhang@intel.com>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Currently rcu_preempt_deferred_qs_irqrestore() releases rnp->boost_mtx
before reporting the expedited quiescent state. Under heavy real-time
load, this can result in this function being preempted before the
quiescent state is reported, which can in turn prevent the expedited grace
period from completing. Tim Murray reports that the resulting expedited
grace periods can take hundreds of milliseconds and even more than one
second, when they should normally complete in less than a millisecond.
This was fine given that there were no particular response-time
constraints for synchronize_rcu_expedited(), as it was designed
for throughput rather than latency. However, some users now need
sub-100-millisecond response-time constratints.
This patch therefore follows Neeraj's suggestion (seconded by Tim and
by Uladzislau Rezki) of simply reversing the two operations.
Reported-by: Tim Murray <timmurray@google.com>
Reported-by: Joel Fernandes <joelaf@google.com>
Reported-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Tested-by: Tim Murray <timmurray@google.com>
Cc: Todd Kjos <tkjos@google.com>
Cc: Sandeep Patil <sspatil@google.com>
Cc: <stable@vger.kernel.org> # 5.4.x
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
In non-preemptible kernels, an unfortunately timed expedited grace period
can result in the rcu_exp_handler() IPI handler setting the rcu_data
structure's cpu_no_qs.b.exp field just as the target CPU enters idle.
There are situations in which this field will not be checked until after
that CPU exits idle. The resulting grace-period latency does not qualify
as "expedited".
This commit therefore checks this field upon non-preemptible idle entry in
the rcu_preempt_deferred_qs() function. It also qualifies the rcu_core()
preempt_count() check with IS_ENABLED(CONFIG_PREEMPT_COUNT) to prevent
false-positive quiescent states from count-free kernels.
Reported-by: Neeraj Upadhyay <neeraju@codeaurora.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Having two fields for the same purpose with subtle differences on
different RCU flavours is confusing, especially when both fields always
exist on both RCU flavours.
Fortunately, it is now safe for preemptible RCU to rely on the rcu_data
structure's ->cpu_no_qs.b.exp field, just like non-preemptible RCU.
This commit therefore removes the ad-hoc ->exp_deferred_qs field.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
On non-preemptible RCU, move clearing of the rcu_data structure's
->cpu_no_qs.b.exp filed to the actual expedited quiescent state report
function, matching hw preemptible RCU handles the ->exp_deferred_qs field.
This prepares for removing ->exp_deferred_qs in favor of ->cpu_no_qs.b.exp
for both preemptible and non-preemptible RCU.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>