rcu_report_dead() and rcutree_migrate_callbacks() have their headers in
rcupdate.h while those are pure rcutree calls, like the other CPU-hotplug
functions.
Also rcu_cpu_starting() and rcu_report_dead() have different naming
conventions while they mirror each other's effects.
Fix the headers and propose a naming that relates both functions and
aligns with the prefix of other rcutree CPU-hotplug functions.
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
With the help of newly changed function parse_crashkernel() and generic
reserve_crashkernel_generic(), crashkernel reservation can be simplified
by steps:
1) Add a new header file <asm/crash_core.h>, and define CRASH_ALIGN,
CRASH_ADDR_LOW_MAX, CRASH_ADDR_HIGH_MAX and
DEFAULT_CRASH_KERNEL_LOW_SIZE in <asm/crash_core.h>;
2) Add arch_reserve_crashkernel() to call parse_crashkernel() and
reserve_crashkernel_generic(), and do the ARCH specific work if
needed.
3) Add ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION Kconfig in
arch/x86/Kconfig.
When adding DEFAULT_CRASH_KERNEL_LOW_SIZE, add crash_low_size_default() to
calculate crashkernel low memory because x86_64 has special requirement.
The old reserve_crashkernel_low() and reserve_crashkernel() can be
removed.
[bhe@redhat.com: move crash_low_size_default() code into <asm/crash_core.h>]
Link: https://lkml.kernel.org/r/ZQpeAjOmuMJBFw1/@MiWiFi-R3L-srv
Link: https://lkml.kernel.org/r/20230914033142.676708-7-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Jiahao <chenjiahao16@huawei.com>
Cc: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The usage of '&' before the array parameter is redundant because '&array'
is equivalent to 'array'. Therefore, there is no need to include '&'
before the array parameter. In fact, using '&' can cause more confusion,
especially for individuals who are not familiar with the address-of
operation for arrays. They might mistakenly believe that one is different
from the other and spend additional time realizing that they are actually
the same.
Harmonizing the style by removing the unnecessary '&' would save time for
those individuals.
Signed-off-by: Wang Jinchao <wangjinchao@xfusion.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/ZMt24BGEX9IhPSY6@fedora
The following commit:
ddb5cdbafa ("kbuild: generate KSYMTAB entries by modpost")
deprecated <asm/export.h>, which is now a wrapper of <linux/export.h>.
Use <linux/export.h> in *.S as well as in *.c files.
After all the <asm/export.h> lines are replaced, <asm/export.h> and
<asm-generic/export.h> will be removed.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230806145958.380314-2-masahiroy@kernel.org
Since the size value is added to the base address to yield the last valid
byte address of the GDT, the current size value of startup_gdt_descr is
incorrect (too large by one), fix it.
[ mingo: This probably never mattered, because startup_gdt[] is only used
in a very controlled fashion - but make it consistent nevertheless. ]
Fixes: 866b556efa ("x86/head/64: Install startup GDT")
Signed-off-by: Yuntao Wang <ytcoode@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20230807084547.217390-1-ytcoode@gmail.com
c->x86_cache_alignment is initialized from c->x86_clflush_size.
However, commit fbf6449f84 moved c->x86_clflush_size initialization
to later in boot without moving the c->x86_cache_alignment assignment:
fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")
This presumably left c->x86_cache_alignment set to zero for longer
than it should be.
The result was an oops on 32-bit kernels while accessing a pointer
at 0x20. The 0x20 came from accessing a structure member at offset
0x10 (buffer->cpumask) from a ZERO_SIZE_PTR=0x10. kmalloc() can
evidently return ZERO_SIZE_PTR when it's given 0 as its alignment
requirement.
Move the c->x86_cache_alignment initialization to be after
c->x86_clflush_size has an actual value.
Fixes: fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20231002220045.1014760-1-dave.hansen@linux.intel.com
Fetching the device tree configuration before initmem_init() is necessary
to allow the parsing of NUMA node information. However moving the entire
x86_dtb_init() call before initmem_init() is not correct as APIC/IO-APIC enumeration
has to be after initmem_init().
Thus, move the x86_flattree_get_config() call out of x86_dtb_init(),
into setup_arch(), to call it before initmem_init(), and
leave the ACPI/IOAPIC registration sequence as-is.
[ mingo: Updated the changelog for clarity. ]
Signed-off-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Link: https://lore.kernel.org/r/1692949657-16446-1-git-send-email-ssengar@linux.microsoft.com
SNP retrieves the majority of CPUID information from the SNP CPUID page.
But there are times when that information needs to be supplemented by the
hypervisor, for example, obtaining the initial APIC ID of the vCPU from
leaf 1.
The current implementation uses the MSR protocol to retrieve the data from
the hypervisor, even when a GHCB exists. The problem arises when an NMI
arrives on return from the VMGEXIT. The NMI will be immediately serviced
and may generate a #VC requiring communication with the hypervisor.
Since a GHCB exists in this case, it will be used. As part of using the
GHCB, the #VC handler will write the GHCB physical address into the GHCB
MSR and the #VC will be handled.
When the NMI completes, processing resumes at the site of the VMGEXIT
which is expecting to read the GHCB MSR and find a CPUID MSR protocol
response. Since the NMI handling overwrote the GHCB MSR response, the
guest will see an invalid reply from the hypervisor and self-terminate.
Fix this problem by using the GHCB when it is available. Any NMI
received is properly handled because the GHCB contents are copied into
a backup page and restored on NMI exit, thus preserving the active GHCB
request or result.
[ bp: Touchups. ]
Fixes: ee0bfa08a3 ("x86/compressed/64: Add support for SEV-SNP CPUID table in #VC handlers")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/a5856fa1ebe3879de91a8f6298b6bbd901c61881.1690578565.git.thomas.lendacky@amd.com
The SGX EPC reclaimer (ksgxd) may reclaim the SECS EPC page for an
enclave and set secs.epc_page to NULL. The SECS page is used for EAUG
and ELDU in the SGX page fault handler. However, the NULL check for
secs.epc_page is only done for ELDU, not EAUG before being used.
Fix this by doing the same NULL check and reloading of the SECS page as
needed for both EAUG and ELDU.
The SECS page holds global enclave metadata. It can only be reclaimed
when there are no other enclave pages remaining. At that point,
virtually nothing can be done with the enclave until the SECS page is
paged back in.
An enclave can not run nor generate page faults without a resident SECS
page. But it is still possible for a #PF for a non-SECS page to race
with paging out the SECS page: when the last resident non-SECS page A
triggers a #PF in a non-resident page B, and then page A and the SECS
both are paged out before the #PF on B is handled.
Hitting this bug requires that race triggered with a #PF for EAUG.
Following is a trace when it happens.
BUG: kernel NULL pointer dereference, address: 0000000000000000
RIP: 0010:sgx_encl_eaug_page+0xc7/0x210
Call Trace:
? __kmem_cache_alloc_node+0x16a/0x440
? xa_load+0x6e/0xa0
sgx_vma_fault+0x119/0x230
__do_fault+0x36/0x140
do_fault+0x12f/0x400
__handle_mm_fault+0x728/0x1110
handle_mm_fault+0x105/0x310
do_user_addr_fault+0x1ee/0x750
? __this_cpu_preempt_check+0x13/0x20
exc_page_fault+0x76/0x180
asm_exc_page_fault+0x27/0x30
Fixes: 5a90d2c3f5 ("x86/sgx: Support adding of pages to an initialized enclave")
Signed-off-by: Haitao Huang <haitao.huang@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Reinette Chatre <reinette.chatre@intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20230728051024.33063-1-haitao.huang%40linux.intel.com
Instead of setting x86_virt_bits to a possibly-correct value and then
correcting it later, do all the necessary checks before setting it.
At this point, the #VC handler references boot_cpu_data.x86_virt_bits,
and in the previous version, it would be triggered by the CPUIDs between
the point at which it is set to 48 and when it is set to the correct
value.
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Adam Dunlap <acdunlap@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jacob Xu <jacobhxu@google.com>
Link: https://lore.kernel.org/r/20230912002703.3924521-3-acdunlap@google.com
Set CR4.PSE in secondary_startup_64: the Intel SDM is clear that it does
not matter whether it's 0 or 1 when 4-level-pts are enabled, but it's
distracting to find CR4 different on BSP and auxiliaries - on x86_64,
BSP alone got to add the PSE bit, in probe_page_size_mask().
Peter Zijlstra adds:
"I think the point is that PSE bit is completely without
meaning in long mode.
But yes, having the same CR4 bits set across BSP and APs is
definitely sane."
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/103ad03a-8c93-c3e2-4226-f79af4d9a074@google.com
Pull x86 rethunk fixes from Borislav Petkov:
"Fix the patching ordering between static calls and return thunks"
* tag 'x86_urgent_for_v6.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86,static_call: Fix static-call vs return-thunk
x86/alternatives: Remove faulty optimization
Pull misc x86 fixes from Ingo Molnar:
- Fix a kexec bug
- Fix an UML build bug
- Fix a handful of SRSO related bugs
- Fix a shadow stacks handling bug & robustify related code
* tag 'x86-urgent-2023-09-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/shstk: Add warning for shadow stack double unmap
x86/shstk: Remove useless clone error handling
x86/shstk: Handle vfork clone failure correctly
x86/srso: Fix SBPB enablement for spec_rstack_overflow=off
x86/srso: Don't probe microcode in a guest
x86/srso: Set CPUID feature bits independently of bug or mitigation status
x86/srso: Fix srso_show_state() side effect
x86/asm: Fix build of UML with KASAN
x86/mm, kexec, ima: Use memblock_free_late() from ima_free_kexec_buffer()
Commit
7825451fa4 ("static_call: Add call depth tracking support")
failed to realize the problem fixed there is not specific to call depth
tracking but applies to all return-thunk uses.
Move the fix to the appropriate place and condition.
Fixes: ee88d363d1 ("x86,static_call: Use alternative RET encoding")
Reported-by: David Kaplan <David.Kaplan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
The following commit
095b8303f3 ("x86/alternative: Make custom return thunk unconditional")
made '__x86_return_thunk' a placeholder value. All code setting
X86_FEATURE_RETHUNK also changes the value of 'x86_return_thunk'. So
the optimization at the beginning of apply_returns() is dead code.
Also, before the above-mentioned commit, the optimization actually had a
bug It bypassed __static_call_fixup(), causing some raw returns to
remain unpatched in static call trampolines. Thus the 'Fixes' tag.
Fixes: d2408e043e ("x86/alternative: Optimize returns patching")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/16d19d2249d4485d8380fb215ffaae81e6b8119e.1693889988.git.jpoimboe@kernel.org
The 'mid' pointer is being initialized with a value that is never read,
it is being re-assigned and used inside a for-loop. Remove the
redundant initialization.
Cleans up clang scan build warning:
arch/x86/kernel/unwind_orc.c:88:7: warning: Value stored to 'mid' during its initialization is never read [deadcode.DeadStores]
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Link: https://lore.kernel.org/r/20230920114141.118919-1-colin.i.king@gmail.com
There are several ways a thread's shadow stacks can get unmapped. This
can happen on exit or exec, as well as error handling in exec or clone.
The task struct already keeps track of the thread's shadow stack. Use the
size variable to keep track of if the shadow stack has already been freed.
When an attempt to double unmap the thread shadow stack is caught, warn
about it and abort the operation.
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: H.J. Lu <hjl.tools@gmail.com>
Link: https://lore.kernel.org/all/20230908203655.543765-4-rick.p.edgecombe%40intel.com
When clone fails after the shadow stack is allocated, any allocated shadow
stack is cleaned up in exit_thread() in copy_process(). So the logic in
copy_thread() is unneeded, and also will not handle failures that happen
outside of copy_thread().
In addition, since there is a second attempt to unmap the same shadow
stack, there is a race where an newly mapped region could get unmapped.
So remove the logic in copy_thread() and rely on exit_thread() to handle
clone failure.
Fixes: b2926a36b9 ("x86/shstk: Handle thread shadow stack")
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: H.J. Lu <hjl.tools@gmail.com>
Link: https://lore.kernel.org/all/20230908203655.543765-3-rick.p.edgecombe%40intel.com
Shadow stacks are allocated automatically and freed on exit, depending
on the clone flags. The two cases where new shadow stacks are not
allocated are !CLONE_VM (fork()) and CLONE_VFORK (vfork()). For
!CLONE_VM, although a new stack is not allocated, it can be freed normally
because it will happen in the child's copy of the VM.
However, for CLONE_VFORK the parent and the child are actually using the
same shadow stack. So the kernel doesn't need to allocate *or* free a
shadow stack for a CLONE_VFORK child. CLONE_VFORK children already need
special tracking to avoid returning to userspace until the child exits or
execs. Shadow stack uses this same tracking to avoid freeing CLONE_VFORK
shadow stacks.
However, the tracking is not setup until the clone has succeeded
(internally). Which means, if a CLONE_VFORK fails, the existing logic will
not know it is a CLONE_VFORK and proceed to unmap the parents shadow stack.
This error handling cleanup logic runs via exit_thread() in the
bad_fork_cleanup_thread label in copy_process(). The issue was seen in
the glibc test "posix/tst-spawn3-pidfd" while running with shadow stack
using currently out-of-tree glibc patches.
Fix it by not unmapping the vfork shadow stack in the error case as well.
Since clone is implemented in core code, it is not ideal to pass the clone
flags along the error path in order to have shadow stack code have
symmetric logic in the freeing half of the thread shadow stack handling.
Instead use the existing state for thread shadow stacks to track whether
the thread is managing its own shadow stack. For CLONE_VFORK, simply set
shstk->base and shstk->size to 0, and have it mean the thread is not
managing a shadow stack and so should skip cleanup work. Implement this
by breaking up the CLONE_VFORK and !CLONE_VM cases in
shstk_alloc_thread_stack() to separate conditionals since, the logic is
now different between them. In the case of CLONE_VFORK && !CLONE_VM, the
existing behavior is to not clean up the shadow stack in the child (which
should go away quickly with either be exit or exec), so maintain that
behavior by handling the CLONE_VFORK case first in the allocation path.
This new logioc cleanly handles the case of normal, successful
CLONE_VFORK's skipping cleaning up their shadow stack's on exit as well.
So remove the existing, vfork shadow stack freeing logic. This is in
deactivate_mm() where vfork_done is used to tell if it is a vfork child
that can skip cleaning up the thread shadow stack.
Fixes: b2926a36b9 ("x86/shstk: Handle thread shadow stack")
Reported-by: H.J. Lu <hjl.tools@gmail.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Tested-by: H.J. Lu <hjl.tools@gmail.com>
Link: https://lore.kernel.org/all/20230908203655.543765-2-rick.p.edgecombe%40intel.com
To support live migration, the hypervisor sets the "lowest common
denominator" of features. Probing the microcode isn't allowed because
any detected features might go away after a migration.
As Andy Cooper states:
"Linux must not probe microcode when virtualised. What it may see
instantaneously on boot (owing to MSR_PRED_CMD being fully passed
through) is not accurate for the lifetime of the VM."
Rely on the hypervisor to set the needed IBPB_BRTYPE and SBPB bits.
Fixes: 1b5277c0ea ("x86/srso: Add SRSO_NO support")
Suggested-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/3938a7209606c045a3f50305d201d840e8c834c7.1693889988.git.jpoimboe@kernel.org
Booting with mitigations=off incorrectly prevents the
X86_FEATURE_{IBPB_BRTYPE,SBPB} CPUID bits from getting set.
Also, future CPUs without X86_BUG_SRSO might still have IBPB with branch
type prediction flushing, in which case SBPB should be used instead of
IBPB. The current code doesn't allow for that.
Also, cpu_has_ibpb_brtype_microcode() has some surprising side effects
and the setting of these feature bits really doesn't belong in the
mitigation code anyway. Move it to earlier.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/869a1709abfe13b673bdd10c2f4332ca253a40bc.1693889988.git.jpoimboe@kernel.org
Only Xen is using the paravirt lazy mode code, so it can be moved to
Xen specific sources.
This allows to make some of the functions static or to merge them into
their only call sites.
While at it do a rename from "paravirt" to "xen" for all moved
specifiers.
No functional change.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Link: https://lore.kernel.org/r/20230913113828.18421-3-jgross@suse.com
Signed-off-by: Juergen Gross <jgross@suse.com>
The code calling ima_free_kexec_buffer() runs long after the memblock
allocator has already been torn down, potentially resulting in a use
after free in memblock_isolate_range().
With KASAN or KFENCE, this use after free will result in a BUG
from the idle task, and a subsequent kernel panic.
Switch ima_free_kexec_buffer() over to memblock_free_late() to avoid
that bug.
Fixes: fee3ff99bc ("powerpc: Move arch independent ima kexec functions to drivers/of/kexec.c")
Suggested-by: Mike Rappoport <rppt@kernel.org>
Signed-off-by: Rik van Riel <riel@surriel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20230817135558.67274c83@imladris.surriel.com
Pull x86 fixes from Ingo Molnar:
"Misc fixes:
- Fix an UV boot crash
- Skip spurious ENDBR generation on _THIS_IP_
- Fix ENDBR use in putuser() asm methods
- Fix corner case boot crashes on 5-level paging
- and fix a false positive WARNING on LTO kernels"
* tag 'x86-urgent-2023-09-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/purgatory: Remove LTO flags
x86/boot/compressed: Reserve more memory for page tables
x86/ibt: Avoid duplicate ENDBR in __put_user_nocheck*()
x86/ibt: Suppress spurious ENDBR
x86/platform/uv: Use alternate source for socket to node data
Pull scheduler fixes from Ingo Molnar:
"Fix a performance regression on large SMT systems, an Intel SMT4
balancing bug, and a topology setup bug on (Intel) hybrid processors"
* tag 'sched-urgent-2023-09-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sched: Restore the SD_ASYM_PACKING flag in the DIE domain
sched/fair: Fix SMT4 group_smt_balance handling
sched/fair: Optimize should_we_balance() for large SMT systems
Another major aspect of supporting running of 32bit processes is the
ability to access 32bit syscalls. Such syscalls can be invoked by
using the legacy int 0x80 handler and sysenter/syscall instructions.
If IA32 emulation is disabled ensure that each of those 3 distinct
mechanisms are also disabled. For int 0x80 a #GP exception would be
generated since the respective descriptor is not going to be loaded at
all. Invoking sysenter will also result in a #GP since IA32_SYSENTER_CS
contains an invalid segment. Finally, syscall instruction cannot really
be disabled so it's configured to execute a minimal handler.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-6-nik.borisov@suse.com
The SYSCALL instruction cannot really be disabled in compatibility mode.
The best that can be done is to configure the CSTAR msr to point to a
minimal handler. Currently this handler has a rather misleading name -
ignore_sysret() as it's not really doing anything with sysret.
Give it a more descriptive name.
Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-3-nik.borisov@suse.com
Now the 'struct tdx_hypercall_args' and 'struct tdx_module_args' are
almost the same, and the TDX_HYPERCALL and TDX_MODULE_CALL asm macro
share similar code pattern too. The __tdx_hypercall() and __tdcall()
should be unified to use the same assembly code.
As a preparation to unify them, simplify the TDX_HYPERCALL to make it
more like the TDX_MODULE_CALL.
The TDX_HYPERCALL takes the pointer of 'struct tdx_hypercall_args' as
function call argument, and does below extra things comparing to the
TDX_MODULE_CALL:
1) It sets RAX to 0 (TDG.VP.VMCALL leaf) internally;
2) It sets RCX to the (fixed) bitmap of shared registers internally;
3) It calls __tdx_hypercall_failed() internally (and panics) when the
TDCALL instruction itself fails;
4) After TDCALL, it moves R10 to RAX to return the return code of the
VMCALL leaf, regardless the '\ret' asm macro argument;
Firstly, change the TDX_HYPERCALL to take the same function call
arguments as the TDX_MODULE_CALL does: TDCALL leaf ID, and the pointer
to 'struct tdx_module_args'. Then 1) and 2) can be moved to the
caller:
- TDG.VP.VMCALL leaf ID can be passed via the function call argument;
- 'struct tdx_module_args' is 'struct tdx_hypercall_args' + RCX, thus
the bitmap of shared registers can be passed via RCX in the
structure.
Secondly, to move 3) and 4) out of assembly, make the TDX_HYPERCALL
always save output registers to the structure. The caller then can:
- Call __tdx_hypercall_failed() when TDX_HYPERCALL returns error;
- Return R10 in the structure as the return code of the VMCALL leaf;
With above changes, change the asm function from __tdx_hypercall() to
__tdcall_hypercall(), and reimplement __tdx_hypercall() as the C wrapper
of it. This avoids having to add another wrapper of __tdx_hypercall()
(_tdx_hypercall() is already taken).
The __tdcall_hypercall() will be replaced with a __tdcall() variant
using TDX_MODULE_CALL in a later commit as the final goal is to have one
assembly to handle both TDCALL and TDVMCALL.
Currently, the __tdx_hypercall() asm is in '.noinstr.text'. To keep
this unchanged, annotate __tdx_hypercall(), which is a C function now,
as 'noinstr'.
Remove the __tdx_hypercall_ret() as __tdx_hypercall() already does so.
Implement __tdx_hypercall() in tdx-shared.c so it can be shared with the
compressed code.
Opportunistically fix a checkpatch error complaining using space around
parenthesis '(' and ')' while moving the bitmap of shared registers to
<asm/shared/tdx.h>.
[ dhansen: quash new calls of __tdx_hypercall_ret() that showed up ]
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/0cbf25e7aee3256288045023a31f65f0cef90af4.1692096753.git.kai.huang%40intel.com
The TDX guest live migration support (TDX 1.5) adds new TDCALL/SEAMCALL
leaf functions. Those new TDCALLs/SEAMCALLs take additional registers
for input (R10-R13) and output (R12-R13). TDG.SERVTD.RD is an example.
Also, the current TDX_MODULE_CALL doesn't aim to handle TDH.VP.ENTER
SEAMCALL, which monitors the TDG.VP.VMCALL in input/output registers
when it returns in case of VMCALL from TDX guest.
With those new TDCALLs/SEAMCALLs and the TDH.VP.ENTER covered, the
TDX_MODULE_CALL macro basically needs to handle the same input/output
registers as the TDX_HYPERCALL does. And as a result, they also share
similar logic in the assembly, thus should be unified to use one common
assembly.
Extend the TDX_MODULE_CALL asm to support the new TDCALLs/SEAMCALLs and
also the TDH.VP.ENTER SEAMCALL. Eventually it will be unified with the
TDX_HYPERCALL.
The new input/output registers fit with the "callee-saved" registers in
the x86 calling convention. Add a new "saved" parameter to support
those new TDCALLs/SEAMCALLs and TDH.VP.ENTER and keep the existing
TDCALLs/SEAMCALLs minimally impacted.
For TDH.VP.ENTER, after it returns the registers shared by the guest
contain guest's values. Explicitly clear them to prevent speculative
use of guest's values.
Note most TDX live migration related SEAMCALLs may also clobber AVX*
state ("AVX, AVX2 and AVX512 state: may be reset to the architectural
INIT state" -- see TDH.EXPORT.MEM for example). And TDH.VP.ENTER also
clobbers XMM0-XMM15 when the corresponding bit is set in RCX. Don't
handle them in the TDX_MODULE_CALL macro but let the caller save and
restore when needed.
This is basically based on Peter's code.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/d4785de7c392f7c5684407f6c24a73b92148ec49.1692096753.git.kai.huang%40intel.com
Currently, the TDX_MODULE_CALL asm macro, which handles both TDCALL and
SEAMCALL, takes one parameter for each input register and an optional
'struct tdx_module_output' (a collection of output registers) as output.
This is different from the TDX_HYPERCALL macro which uses a single
'struct tdx_hypercall_args' to carry all input/output registers.
The newer TDX versions introduce more TDCALLs/SEAMCALLs which use more
input/output registers. Also, the TDH.VP.ENTER (which isn't covered
by the current TDX_MODULE_CALL macro) basically can use all registers
that the TDX_HYPERCALL does. The current TDX_MODULE_CALL macro isn't
extendible to cover those cases.
Similar to the TDX_HYPERCALL macro, simplify the TDX_MODULE_CALL macro
to use a single structure 'struct tdx_module_args' to carry all the
input/output registers. Currently, R10/R11 are only used as output
register but not as input by any TDCALL/SEAMCALL. Change to also use
R10/R11 as input register to make input/output registers symmetric.
Currently, the TDX_MODULE_CALL macro depends on the caller to pass a
non-NULL 'struct tdx_module_output' to get additional output registers.
Similar to the TDX_HYPERCALL macro, change the TDX_MODULE_CALL macro to
take a new 'ret' macro argument to indicate whether to save the output
registers to the 'struct tdx_module_args'. Also introduce a new
__tdcall_ret() for that purpose, similar to the __tdx_hypercall_ret().
Note the tdcall(), which is a wrapper of __tdcall(), is called by three
callers: tdx_parse_tdinfo(), tdx_get_ve_info() and tdx_early_init().
The former two need the additional output but the last one doesn't. For
simplicity, make tdcall() always call __tdcall_ret() to avoid another
"_ret()" wrapper. The last caller tdx_early_init() isn't performance
critical anyway.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/all/483616c1762d85eb3a3c3035a7de061cfacf2f14.1692096753.git.kai.huang%40intel.com
The UV code attempts to build a set of tables to allow it to do
bidirectional socket<=>node lookups.
But when nr_cpus is set to a smaller number than actually present, the
cpu_to_node() mapping information for unused CPUs is not available to
build_socket_tables(). This results in skipping some nodes or sockets
when creating the tables and leaving some -1's for later code to trip.
over, causing oopses.
The problem is that the socket<=>node lookups are created by doing a
loop over all CPUs, then looking up the CPU's APICID and socket. But
if a CPU is not present, there is no way to start this lookup.
Instead of looping over all CPUs, take CPUs out of the equation
entirely. Loop over all APICIDs which are mapped to a valid NUMA node.
Then just extract the socket-id from the APICID.
This avoid tripping over disabled CPUs.
Fixes: 8a50c58519 ("x86/platform/uv: UV support for sub-NUMA clustering")
Signed-off-by: Steve Wahl <steve.wahl@hpe.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20230807141730.1117278-1-steve.wahl%40hpe.com
Pull x86 fixes from Ingo Molnar:
"Fix preemption delays in the SGX code, remove unnecessarily
UAPI-exported code, fix a ld.lld linker (in)compatibility quirk and
make the x86 SMP init code a bit more conservative to fix kexec()
lockups"
* tag 'x86-urgent-2023-09-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Break up long non-preemptible delays in sgx_vepc_release()
x86: Remove the arch_calc_vm_prot_bits() macro from the UAPI
x86/build: Fix linker fill bytes quirk/incompatibility for ld.lld
x86/smp: Don't send INIT to non-present and non-booted CPUs
Pull kvm updates from Paolo Bonzini:
"ARM:
- Clean up vCPU targets, always returning generic v8 as the preferred
target
- Trap forwarding infrastructure for nested virtualization (used for
traps that are taken from an L2 guest and are needed by the L1
hypervisor)
- FEAT_TLBIRANGE support to only invalidate specific ranges of
addresses when collapsing a table PTE to a block PTE. This avoids
that the guest refills the TLBs again for addresses that aren't
covered by the table PTE.
- Fix vPMU issues related to handling of PMUver.
- Don't unnecessary align non-stack allocations in the EL2 VA space
- Drop HCR_VIRT_EXCP_MASK, which was never used...
- Don't use smp_processor_id() in kvm_arch_vcpu_load(), but the cpu
parameter instead
- Drop redundant call to kvm_set_pfn_accessed() in user_mem_abort()
- Remove prototypes without implementations
RISC-V:
- Zba, Zbs, Zicntr, Zicsr, Zifencei, and Zihpm support for guest
- Added ONE_REG interface for SATP mode
- Added ONE_REG interface to enable/disable multiple ISA extensions
- Improved error codes returned by ONE_REG interfaces
- Added KVM_GET_REG_LIST ioctl() implementation for KVM RISC-V
- Added get-reg-list selftest for KVM RISC-V
s390:
- PV crypto passthrough enablement (Tony, Steffen, Viktor, Janosch)
Allows a PV guest to use crypto cards. Card access is governed by
the firmware and once a crypto queue is "bound" to a PV VM every
other entity (PV or not) looses access until it is not bound
anymore. Enablement is done via flags when creating the PV VM.
- Guest debug fixes (Ilya)
x86:
- Clean up KVM's handling of Intel architectural events
- Intel bugfixes
- Add support for SEV-ES DebugSwap, allowing SEV-ES guests to use
debug registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE
update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to
reinject #BP and skip INT3 broke SEV guests (can't decode INT3 to
skip it)
- Retry APIC map recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie
the "emergency disabling" behavior to KVM actually being loaded,
and move all of the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the
TSC ratio MSR cannot diverge from the default when TSC scaling is
disabled up related code
- Add a framework to allow "caching" feature flags so that KVM can
check if the guest can use a feature without needing to search
guest CPUID
- Rip out the ancient MMU_DEBUG crud and replace the useful bits with
CONFIG_KVM_PROVE_MMU
- Fix KVM's handling of !visible guest roots to avoid premature
triple fault injection
- Overhaul KVM's page-track APIs, and KVMGT's usage, to reduce the
API surface that is needed by external users (currently only
KVMGT), and fix a variety of issues in the process
Generic:
- Wrap kvm_{gfn,hva}_range.pte in a union to allow mmu_notifier
events to pass action specific data without needing to constantly
update the main handlers.
- Drop unused function declarations
Selftests:
- Add testcases to x86's sync_regs_test for detecting KVM TOCTOU bugs
- Add support for printf() in guest code and covert all guest asserts
to use printf-based reporting
- Clean up the PMU event filter test and add new testcases
- Include x86 selftests in the KVM x86 MAINTAINERS entry"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (279 commits)
KVM: x86/mmu: Include mmu.h in spte.h
KVM: x86/mmu: Use dummy root, backed by zero page, for !visible guest roots
KVM: x86/mmu: Disallow guest from using !visible slots for page tables
KVM: x86/mmu: Harden TDP MMU iteration against root w/o shadow page
KVM: x86/mmu: Harden new PGD against roots without shadow pages
KVM: x86/mmu: Add helper to convert root hpa to shadow page
drm/i915/gvt: Drop final dependencies on KVM internal details
KVM: x86/mmu: Handle KVM bookkeeping in page-track APIs, not callers
KVM: x86/mmu: Drop @slot param from exported/external page-track APIs
KVM: x86/mmu: Bug the VM if write-tracking is used but not enabled
KVM: x86/mmu: Assert that correct locks are held for page write-tracking
KVM: x86/mmu: Rename page-track APIs to reflect the new reality
KVM: x86/mmu: Drop infrastructure for multiple page-track modes
KVM: x86/mmu: Use page-track notifiers iff there are external users
KVM: x86/mmu: Move KVM-only page-track declarations to internal header
KVM: x86: Remove the unused page-track hook track_flush_slot()
drm/i915/gvt: switch from ->track_flush_slot() to ->track_remove_region()
KVM: x86: Add a new page-track hook to handle memslot deletion
drm/i915/gvt: Don't bother removing write-protection on to-be-deleted slot
KVM: x86: Reject memslot MOVE operations if KVMGT is attached
...
On large enclaves we hit the softlockup warning with following call trace:
xa_erase()
sgx_vepc_release()
__fput()
task_work_run()
do_exit()
The latency issue is similar to the one fixed in:
8795359e35 ("x86/sgx: Silence softlockup detection when releasing large enclaves")
The test system has 64GB of enclave memory, and all is assigned to a single VM.
Release of 'vepc' takes a longer time and causes long latencies, which triggers
the softlockup warning.
Add cond_resched() to give other tasks a chance to run and reduce
latencies, which also avoids the softlockup detector.
[ mingo: Rewrote the changelog. ]
Fixes: 540745ddbc ("x86/sgx: Introduce virtual EPC for use by KVM guests")
Reported-by: Yu Zhang <yu.zhang@ionos.com>
Signed-off-by: Jack Wang <jinpu.wang@ionos.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Yu Zhang <yu.zhang@ionos.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Acked-by: Haitao Huang <haitao.huang@linux.intel.com>
Cc: stable@vger.kernel.org
With ":text =0xcccc", ld.lld fills unused text area with 0xcccc0000.
Example objdump -D output:
ffffffff82b04203: 00 00 add %al,(%rax)
ffffffff82b04205: cc int3
ffffffff82b04206: cc int3
ffffffff82b04207: 00 00 add %al,(%rax)
ffffffff82b04209: cc int3
ffffffff82b0420a: cc int3
Replace it with ":text =0xcccccccc", so we get the following instead:
ffffffff82b04203: cc int3
ffffffff82b04204: cc int3
ffffffff82b04205: cc int3
ffffffff82b04206: cc int3
ffffffff82b04207: cc int3
ffffffff82b04208: cc int3
gcc/ld doesn't seem to have the same issue. The generated code stays the
same for gcc/ld.
Signed-off-by: Song Liu <song@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Fixes: 7705dc8557 ("x86/vmlinux: Use INT3 instead of NOP for linker fill bytes")
Link: https://lore.kernel.org/r/20230906175215.2236033-1-song@kernel.org
Pull hyperv updates from Wei Liu:
- Support for SEV-SNP guests on Hyper-V (Tianyu Lan)
- Support for TDX guests on Hyper-V (Dexuan Cui)
- Use SBRM API in Hyper-V balloon driver (Mitchell Levy)
- Avoid dereferencing ACPI root object handle in VMBus driver (Maciej
Szmigiero)
- A few misecllaneous fixes (Jiapeng Chong, Nathan Chancellor, Saurabh
Sengar)
* tag 'hyperv-next-signed-20230902' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (24 commits)
x86/hyperv: Remove duplicate include
x86/hyperv: Move the code in ivm.c around to avoid unnecessary ifdef's
x86/hyperv: Remove hv_isolation_type_en_snp
x86/hyperv: Use TDX GHCI to access some MSRs in a TDX VM with the paravisor
Drivers: hv: vmbus: Bring the post_msg_page back for TDX VMs with the paravisor
x86/hyperv: Introduce a global variable hyperv_paravisor_present
Drivers: hv: vmbus: Support >64 VPs for a fully enlightened TDX/SNP VM
x86/hyperv: Fix serial console interrupts for fully enlightened TDX guests
Drivers: hv: vmbus: Support fully enlightened TDX guests
x86/hyperv: Support hypercalls for fully enlightened TDX guests
x86/hyperv: Add hv_isolation_type_tdx() to detect TDX guests
x86/hyperv: Fix undefined reference to isolation_type_en_snp without CONFIG_HYPERV
x86/hyperv: Add missing 'inline' to hv_snp_boot_ap() stub
hv: hyperv.h: Replace one-element array with flexible-array member
Drivers: hv: vmbus: Don't dereference ACPI root object handle
x86/hyperv: Add hyperv-specific handling for VMMCALL under SEV-ES
x86/hyperv: Add smp support for SEV-SNP guest
clocksource: hyper-v: Mark hyperv tsc page unencrypted in sev-snp enlightened guest
x86/hyperv: Use vmmcall to implement Hyper-V hypercall in sev-snp enlightened guest
drivers: hv: Mark percpu hvcall input arg page unencrypted in SEV-SNP enlightened guest
...
Vasant reported that kexec() can hang or reset the machine when it tries to
park CPUs via INIT. This happens when the kernel is using extended APIC,
but the present mask has APIC IDs >= 0x100 enumerated.
As extended APIC can only handle 8 bit of APIC ID sending INIT to APIC ID
0x100 sends INIT to APIC ID 0x0. That's the boot CPU which is special on
x86 and INIT causes the system to hang or resets the machine.
Prevent this by sending INIT only to those CPUs which have been booted
once.
Fixes: 45e34c8af5 ("x86/smp: Put CPUs into INIT on shutdown if possible")
Reported-by: Dheeraj Kumar Srivastava <dheerajkumar.srivastava@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vasant Hegde <vasant.hegde@amd.com>
Link: https://lore.kernel.org/r/87cyzwjbff.ffs@tglx