Files
linux/arch/parisc/kernel/cache.c
Helge Deller fa69a8063f parisc: Fix random data corruption from exception handler
commit 8b1d723956 upstream.

The current exception handler implementation, which assists when accessing
user space memory, may exhibit random data corruption if the compiler decides
to use a different register than the specified register %r29 (defined in
ASM_EXCEPTIONTABLE_REG) for the error code. If the compiler choose another
register, the fault handler will nevertheless store -EFAULT into %r29 and thus
trash whatever this register is used for.
Looking at the assembly I found that this happens sometimes in emulate_ldd().

To solve the issue, the easiest solution would be if it somehow is
possible to tell the fault handler which register is used to hold the error
code. Using %0 or %1 in the inline assembly is not posssible as it will show
up as e.g. %r29 (with the "%r" prefix), which the GNU assembler can not
convert to an integer.

This patch takes another, better and more flexible approach:
We extend the __ex_table (which is out of the execution path) by one 32-word.
In this word we tell the compiler to insert the assembler instruction
"or %r0,%r0,%reg", where %reg references the register which the compiler
choosed for the error return code.
In case of an access failure, the fault handler finds the __ex_table entry and
can examine the opcode. The used register is encoded in the lowest 5 bits, and
the fault handler can then store -EFAULT into this register.

Since we extend the __ex_table to 3 words we can't use the BUILDTIME_TABLE_SORT
config option any longer.

Signed-off-by: Helge Deller <deller@gmx.de>
Cc: <stable@vger.kernel.org> # v6.0+
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2024-02-23 09:25:18 +01:00

875 lines
23 KiB
C

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (C) 1999-2006 Helge Deller <deller@gmx.de> (07-13-1999)
* Copyright (C) 1999 SuSE GmbH Nuernberg
* Copyright (C) 2000 Philipp Rumpf (prumpf@tux.org)
*
* Cache and TLB management
*
*/
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/seq_file.h>
#include <linux/pagemap.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/syscalls.h>
#include <asm/pdc.h>
#include <asm/cache.h>
#include <asm/cacheflush.h>
#include <asm/tlbflush.h>
#include <asm/page.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/shmparam.h>
#include <asm/mmu_context.h>
#include <asm/cachectl.h>
int split_tlb __ro_after_init;
int dcache_stride __ro_after_init;
int icache_stride __ro_after_init;
EXPORT_SYMBOL(dcache_stride);
void flush_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
EXPORT_SYMBOL(flush_dcache_page_asm);
void purge_dcache_page_asm(unsigned long phys_addr, unsigned long vaddr);
void flush_icache_page_asm(unsigned long phys_addr, unsigned long vaddr);
/* Internal implementation in arch/parisc/kernel/pacache.S */
void flush_data_cache_local(void *); /* flushes local data-cache only */
void flush_instruction_cache_local(void); /* flushes local code-cache only */
/* On some machines (i.e., ones with the Merced bus), there can be
* only a single PxTLB broadcast at a time; this must be guaranteed
* by software. We need a spinlock around all TLB flushes to ensure
* this.
*/
DEFINE_SPINLOCK(pa_tlb_flush_lock);
#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
int pa_serialize_tlb_flushes __ro_after_init;
#endif
struct pdc_cache_info cache_info __ro_after_init;
#ifndef CONFIG_PA20
struct pdc_btlb_info btlb_info;
#endif
DEFINE_STATIC_KEY_TRUE(parisc_has_cache);
DEFINE_STATIC_KEY_TRUE(parisc_has_dcache);
DEFINE_STATIC_KEY_TRUE(parisc_has_icache);
static void cache_flush_local_cpu(void *dummy)
{
if (static_branch_likely(&parisc_has_icache))
flush_instruction_cache_local();
if (static_branch_likely(&parisc_has_dcache))
flush_data_cache_local(NULL);
}
void flush_cache_all_local(void)
{
cache_flush_local_cpu(NULL);
}
void flush_cache_all(void)
{
if (static_branch_likely(&parisc_has_cache))
on_each_cpu(cache_flush_local_cpu, NULL, 1);
}
static inline void flush_data_cache(void)
{
if (static_branch_likely(&parisc_has_dcache))
on_each_cpu(flush_data_cache_local, NULL, 1);
}
/* Kernel virtual address of pfn. */
#define pfn_va(pfn) __va(PFN_PHYS(pfn))
void __update_cache(pte_t pte)
{
unsigned long pfn = pte_pfn(pte);
struct folio *folio;
unsigned int nr;
/* We don't have pte special. As a result, we can be called with
an invalid pfn and we don't need to flush the kernel dcache page.
This occurs with FireGL card in C8000. */
if (!pfn_valid(pfn))
return;
folio = page_folio(pfn_to_page(pfn));
pfn = folio_pfn(folio);
nr = folio_nr_pages(folio);
if (folio_flush_mapping(folio) &&
test_bit(PG_dcache_dirty, &folio->flags)) {
while (nr--)
flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
clear_bit(PG_dcache_dirty, &folio->flags);
} else if (parisc_requires_coherency())
while (nr--)
flush_kernel_dcache_page_addr(pfn_va(pfn + nr));
}
void
show_cache_info(struct seq_file *m)
{
char buf[32];
seq_printf(m, "I-cache\t\t: %ld KB\n",
cache_info.ic_size/1024 );
if (cache_info.dc_loop != 1)
snprintf(buf, 32, "%lu-way associative", cache_info.dc_loop);
seq_printf(m, "D-cache\t\t: %ld KB (%s%s, %s, alias=%d)\n",
cache_info.dc_size/1024,
(cache_info.dc_conf.cc_wt ? "WT":"WB"),
(cache_info.dc_conf.cc_sh ? ", shared I/D":""),
((cache_info.dc_loop == 1) ? "direct mapped" : buf),
cache_info.dc_conf.cc_alias
);
seq_printf(m, "ITLB entries\t: %ld\n" "DTLB entries\t: %ld%s\n",
cache_info.it_size,
cache_info.dt_size,
cache_info.dt_conf.tc_sh ? " - shared with ITLB":""
);
#ifndef CONFIG_PA20
/* BTLB - Block TLB */
if (btlb_info.max_size==0) {
seq_printf(m, "BTLB\t\t: not supported\n" );
} else {
seq_printf(m,
"BTLB fixed\t: max. %d pages, pagesize=%d (%dMB)\n"
"BTLB fix-entr.\t: %d instruction, %d data (%d combined)\n"
"BTLB var-entr.\t: %d instruction, %d data (%d combined)\n",
btlb_info.max_size, (int)4096,
btlb_info.max_size>>8,
btlb_info.fixed_range_info.num_i,
btlb_info.fixed_range_info.num_d,
btlb_info.fixed_range_info.num_comb,
btlb_info.variable_range_info.num_i,
btlb_info.variable_range_info.num_d,
btlb_info.variable_range_info.num_comb
);
}
#endif
}
void __init
parisc_cache_init(void)
{
if (pdc_cache_info(&cache_info) < 0)
panic("parisc_cache_init: pdc_cache_info failed");
#if 0
printk("ic_size %lx dc_size %lx it_size %lx\n",
cache_info.ic_size,
cache_info.dc_size,
cache_info.it_size);
printk("DC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.dc_base,
cache_info.dc_stride,
cache_info.dc_count,
cache_info.dc_loop);
printk("dc_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.dc_conf),
cache_info.dc_conf.cc_alias,
cache_info.dc_conf.cc_block,
cache_info.dc_conf.cc_line,
cache_info.dc_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.dc_conf.cc_wt,
cache_info.dc_conf.cc_sh,
cache_info.dc_conf.cc_cst,
cache_info.dc_conf.cc_hv);
printk("IC base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx\n",
cache_info.ic_base,
cache_info.ic_stride,
cache_info.ic_count,
cache_info.ic_loop);
printk("IT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
cache_info.it_sp_base,
cache_info.it_sp_stride,
cache_info.it_sp_count,
cache_info.it_loop,
cache_info.it_off_base,
cache_info.it_off_stride,
cache_info.it_off_count);
printk("DT base 0x%lx stride 0x%lx count 0x%lx loop 0x%lx off_base 0x%lx off_stride 0x%lx off_count 0x%lx\n",
cache_info.dt_sp_base,
cache_info.dt_sp_stride,
cache_info.dt_sp_count,
cache_info.dt_loop,
cache_info.dt_off_base,
cache_info.dt_off_stride,
cache_info.dt_off_count);
printk("ic_conf = 0x%lx alias %d blk %d line %d shift %d\n",
*(unsigned long *) (&cache_info.ic_conf),
cache_info.ic_conf.cc_alias,
cache_info.ic_conf.cc_block,
cache_info.ic_conf.cc_line,
cache_info.ic_conf.cc_shift);
printk(" wt %d sh %d cst %d hv %d\n",
cache_info.ic_conf.cc_wt,
cache_info.ic_conf.cc_sh,
cache_info.ic_conf.cc_cst,
cache_info.ic_conf.cc_hv);
printk("D-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
cache_info.dt_conf.tc_sh,
cache_info.dt_conf.tc_page,
cache_info.dt_conf.tc_cst,
cache_info.dt_conf.tc_aid,
cache_info.dt_conf.tc_sr);
printk("I-TLB conf: sh %d page %d cst %d aid %d sr %d\n",
cache_info.it_conf.tc_sh,
cache_info.it_conf.tc_page,
cache_info.it_conf.tc_cst,
cache_info.it_conf.tc_aid,
cache_info.it_conf.tc_sr);
#endif
split_tlb = 0;
if (cache_info.dt_conf.tc_sh == 0 || cache_info.dt_conf.tc_sh == 2) {
if (cache_info.dt_conf.tc_sh == 2)
printk(KERN_WARNING "Unexpected TLB configuration. "
"Will flush I/D separately (could be optimized).\n");
split_tlb = 1;
}
/* "New and Improved" version from Jim Hull
* (1 << (cc_block-1)) * (cc_line << (4 + cnf.cc_shift))
* The following CAFL_STRIDE is an optimized version, see
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023625.html
* http://lists.parisc-linux.org/pipermail/parisc-linux/2004-June/023671.html
*/
#define CAFL_STRIDE(cnf) (cnf.cc_line << (3 + cnf.cc_block + cnf.cc_shift))
dcache_stride = CAFL_STRIDE(cache_info.dc_conf);
icache_stride = CAFL_STRIDE(cache_info.ic_conf);
#undef CAFL_STRIDE
if ((boot_cpu_data.pdc.capabilities & PDC_MODEL_NVA_MASK) ==
PDC_MODEL_NVA_UNSUPPORTED) {
printk(KERN_WARNING "parisc_cache_init: Only equivalent aliasing supported!\n");
#if 0
panic("SMP kernel required to avoid non-equivalent aliasing");
#endif
}
}
void disable_sr_hashing(void)
{
int srhash_type, retval;
unsigned long space_bits;
switch (boot_cpu_data.cpu_type) {
case pcx: /* We shouldn't get this far. setup.c should prevent it. */
BUG();
return;
case pcxs:
case pcxt:
case pcxt_:
srhash_type = SRHASH_PCXST;
break;
case pcxl:
srhash_type = SRHASH_PCXL;
break;
case pcxl2: /* pcxl2 doesn't support space register hashing */
return;
default: /* Currently all PA2.0 machines use the same ins. sequence */
srhash_type = SRHASH_PA20;
break;
}
disable_sr_hashing_asm(srhash_type);
retval = pdc_spaceid_bits(&space_bits);
/* If this procedure isn't implemented, don't panic. */
if (retval < 0 && retval != PDC_BAD_OPTION)
panic("pdc_spaceid_bits call failed.\n");
if (space_bits != 0)
panic("SpaceID hashing is still on!\n");
}
static inline void
__flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr,
unsigned long physaddr)
{
if (!static_branch_likely(&parisc_has_cache))
return;
preempt_disable();
flush_dcache_page_asm(physaddr, vmaddr);
if (vma->vm_flags & VM_EXEC)
flush_icache_page_asm(physaddr, vmaddr);
preempt_enable();
}
static void flush_user_cache_page(struct vm_area_struct *vma, unsigned long vmaddr)
{
unsigned long flags, space, pgd, prot;
#ifdef CONFIG_TLB_PTLOCK
unsigned long pgd_lock;
#endif
vmaddr &= PAGE_MASK;
preempt_disable();
/* Set context for flush */
local_irq_save(flags);
prot = mfctl(8);
space = mfsp(SR_USER);
pgd = mfctl(25);
#ifdef CONFIG_TLB_PTLOCK
pgd_lock = mfctl(28);
#endif
switch_mm_irqs_off(NULL, vma->vm_mm, NULL);
local_irq_restore(flags);
flush_user_dcache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
if (vma->vm_flags & VM_EXEC)
flush_user_icache_range_asm(vmaddr, vmaddr + PAGE_SIZE);
flush_tlb_page(vma, vmaddr);
/* Restore previous context */
local_irq_save(flags);
#ifdef CONFIG_TLB_PTLOCK
mtctl(pgd_lock, 28);
#endif
mtctl(pgd, 25);
mtsp(space, SR_USER);
mtctl(prot, 8);
local_irq_restore(flags);
preempt_enable();
}
void flush_icache_pages(struct vm_area_struct *vma, struct page *page,
unsigned int nr)
{
void *kaddr = page_address(page);
for (;;) {
flush_kernel_dcache_page_addr(kaddr);
flush_kernel_icache_page(kaddr);
if (--nr == 0)
break;
kaddr += PAGE_SIZE;
}
}
static inline pte_t *get_ptep(struct mm_struct *mm, unsigned long addr)
{
pte_t *ptep = NULL;
pgd_t *pgd = mm->pgd;
p4d_t *p4d;
pud_t *pud;
pmd_t *pmd;
if (!pgd_none(*pgd)) {
p4d = p4d_offset(pgd, addr);
if (!p4d_none(*p4d)) {
pud = pud_offset(p4d, addr);
if (!pud_none(*pud)) {
pmd = pmd_offset(pud, addr);
if (!pmd_none(*pmd))
ptep = pte_offset_map(pmd, addr);
}
}
}
return ptep;
}
static inline bool pte_needs_flush(pte_t pte)
{
return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_NO_CACHE))
== (_PAGE_PRESENT | _PAGE_ACCESSED);
}
void flush_dcache_folio(struct folio *folio)
{
struct address_space *mapping = folio_flush_mapping(folio);
struct vm_area_struct *vma;
unsigned long addr, old_addr = 0;
void *kaddr;
unsigned long count = 0;
unsigned long i, nr, flags;
pgoff_t pgoff;
if (mapping && !mapping_mapped(mapping)) {
set_bit(PG_dcache_dirty, &folio->flags);
return;
}
nr = folio_nr_pages(folio);
kaddr = folio_address(folio);
for (i = 0; i < nr; i++)
flush_kernel_dcache_page_addr(kaddr + i * PAGE_SIZE);
if (!mapping)
return;
pgoff = folio->index;
/*
* We have carefully arranged in arch_get_unmapped_area() that
* *any* mappings of a file are always congruently mapped (whether
* declared as MAP_PRIVATE or MAP_SHARED), so we only need
* to flush one address here for them all to become coherent
* on machines that support equivalent aliasing
*/
flush_dcache_mmap_lock_irqsave(mapping, flags);
vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff + nr - 1) {
unsigned long offset = pgoff - vma->vm_pgoff;
unsigned long pfn = folio_pfn(folio);
addr = vma->vm_start;
nr = folio_nr_pages(folio);
if (offset > -nr) {
pfn -= offset;
nr += offset;
} else {
addr += offset * PAGE_SIZE;
}
if (addr + nr * PAGE_SIZE > vma->vm_end)
nr = (vma->vm_end - addr) / PAGE_SIZE;
if (parisc_requires_coherency()) {
for (i = 0; i < nr; i++) {
pte_t *ptep = get_ptep(vma->vm_mm,
addr + i * PAGE_SIZE);
if (!ptep)
continue;
if (pte_needs_flush(*ptep))
flush_user_cache_page(vma,
addr + i * PAGE_SIZE);
/* Optimise accesses to the same table? */
pte_unmap(ptep);
}
} else {
/*
* The TLB is the engine of coherence on parisc:
* The CPU is entitled to speculate any page
* with a TLB mapping, so here we kill the
* mapping then flush the page along a special
* flush only alias mapping. This guarantees that
* the page is no-longer in the cache for any
* process and nor may it be speculatively read
* in (until the user or kernel specifically
* accesses it, of course)
*/
for (i = 0; i < nr; i++)
flush_tlb_page(vma, addr + i * PAGE_SIZE);
if (old_addr == 0 || (old_addr & (SHM_COLOUR - 1))
!= (addr & (SHM_COLOUR - 1))) {
for (i = 0; i < nr; i++)
__flush_cache_page(vma,
addr + i * PAGE_SIZE,
(pfn + i) * PAGE_SIZE);
/*
* Software is allowed to have any number
* of private mappings to a page.
*/
if (!(vma->vm_flags & VM_SHARED))
continue;
if (old_addr)
pr_err("INEQUIVALENT ALIASES 0x%lx and 0x%lx in file %pD\n",
old_addr, addr, vma->vm_file);
if (nr == folio_nr_pages(folio))
old_addr = addr;
}
}
WARN_ON(++count == 4096);
}
flush_dcache_mmap_unlock_irqrestore(mapping, flags);
}
EXPORT_SYMBOL(flush_dcache_folio);
/* Defined in arch/parisc/kernel/pacache.S */
EXPORT_SYMBOL(flush_kernel_dcache_range_asm);
EXPORT_SYMBOL(flush_kernel_icache_range_asm);
#define FLUSH_THRESHOLD 0x80000 /* 0.5MB */
static unsigned long parisc_cache_flush_threshold __ro_after_init = FLUSH_THRESHOLD;
#define FLUSH_TLB_THRESHOLD (16*1024) /* 16 KiB minimum TLB threshold */
static unsigned long parisc_tlb_flush_threshold __ro_after_init = ~0UL;
void __init parisc_setup_cache_timing(void)
{
unsigned long rangetime, alltime;
unsigned long size;
unsigned long threshold, threshold2;
alltime = mfctl(16);
flush_data_cache();
alltime = mfctl(16) - alltime;
size = (unsigned long)(_end - _text);
rangetime = mfctl(16);
flush_kernel_dcache_range((unsigned long)_text, size);
rangetime = mfctl(16) - rangetime;
printk(KERN_DEBUG "Whole cache flush %lu cycles, flushing %lu bytes %lu cycles\n",
alltime, size, rangetime);
threshold = L1_CACHE_ALIGN((unsigned long)((uint64_t)size * alltime / rangetime));
pr_info("Calculated flush threshold is %lu KiB\n",
threshold/1024);
/*
* The threshold computed above isn't very reliable. The following
* heuristic works reasonably well on c8000/rp3440.
*/
threshold2 = cache_info.dc_size * num_online_cpus();
parisc_cache_flush_threshold = threshold2;
printk(KERN_INFO "Cache flush threshold set to %lu KiB\n",
parisc_cache_flush_threshold/1024);
/* calculate TLB flush threshold */
/* On SMP machines, skip the TLB measure of kernel text which
* has been mapped as huge pages. */
if (num_online_cpus() > 1 && !parisc_requires_coherency()) {
threshold = max(cache_info.it_size, cache_info.dt_size);
threshold *= PAGE_SIZE;
threshold /= num_online_cpus();
goto set_tlb_threshold;
}
size = (unsigned long)_end - (unsigned long)_text;
rangetime = mfctl(16);
flush_tlb_kernel_range((unsigned long)_text, (unsigned long)_end);
rangetime = mfctl(16) - rangetime;
alltime = mfctl(16);
flush_tlb_all();
alltime = mfctl(16) - alltime;
printk(KERN_INFO "Whole TLB flush %lu cycles, Range flush %lu bytes %lu cycles\n",
alltime, size, rangetime);
threshold = PAGE_ALIGN((num_online_cpus() * size * alltime) / rangetime);
printk(KERN_INFO "Calculated TLB flush threshold %lu KiB\n",
threshold/1024);
set_tlb_threshold:
if (threshold > FLUSH_TLB_THRESHOLD)
parisc_tlb_flush_threshold = threshold;
else
parisc_tlb_flush_threshold = FLUSH_TLB_THRESHOLD;
printk(KERN_INFO "TLB flush threshold set to %lu KiB\n",
parisc_tlb_flush_threshold/1024);
}
extern void purge_kernel_dcache_page_asm(unsigned long);
extern void clear_user_page_asm(void *, unsigned long);
extern void copy_user_page_asm(void *, void *, unsigned long);
void flush_kernel_dcache_page_addr(const void *addr)
{
unsigned long flags;
flush_kernel_dcache_page_asm(addr);
purge_tlb_start(flags);
pdtlb(SR_KERNEL, addr);
purge_tlb_end(flags);
}
EXPORT_SYMBOL(flush_kernel_dcache_page_addr);
static void flush_cache_page_if_present(struct vm_area_struct *vma,
unsigned long vmaddr, unsigned long pfn)
{
bool needs_flush = false;
pte_t *ptep;
/*
* The pte check is racy and sometimes the flush will trigger
* a non-access TLB miss. Hopefully, the page has already been
* flushed.
*/
ptep = get_ptep(vma->vm_mm, vmaddr);
if (ptep) {
needs_flush = pte_needs_flush(*ptep);
pte_unmap(ptep);
}
if (needs_flush)
flush_cache_page(vma, vmaddr, pfn);
}
void copy_user_highpage(struct page *to, struct page *from,
unsigned long vaddr, struct vm_area_struct *vma)
{
void *kto, *kfrom;
kfrom = kmap_local_page(from);
kto = kmap_local_page(to);
flush_cache_page_if_present(vma, vaddr, page_to_pfn(from));
copy_page_asm(kto, kfrom);
kunmap_local(kto);
kunmap_local(kfrom);
}
void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long user_vaddr, void *dst, void *src, int len)
{
flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
memcpy(dst, src, len);
flush_kernel_dcache_range_asm((unsigned long)dst, (unsigned long)dst + len);
}
void copy_from_user_page(struct vm_area_struct *vma, struct page *page,
unsigned long user_vaddr, void *dst, void *src, int len)
{
flush_cache_page_if_present(vma, user_vaddr, page_to_pfn(page));
memcpy(dst, src, len);
}
/* __flush_tlb_range()
*
* returns 1 if all TLBs were flushed.
*/
int __flush_tlb_range(unsigned long sid, unsigned long start,
unsigned long end)
{
unsigned long flags;
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
end - start >= parisc_tlb_flush_threshold) {
flush_tlb_all();
return 1;
}
/* Purge TLB entries for small ranges using the pdtlb and
pitlb instructions. These instructions execute locally
but cause a purge request to be broadcast to other TLBs. */
while (start < end) {
purge_tlb_start(flags);
mtsp(sid, SR_TEMP1);
pdtlb(SR_TEMP1, start);
pitlb(SR_TEMP1, start);
purge_tlb_end(flags);
start += PAGE_SIZE;
}
return 0;
}
static void flush_cache_pages(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
unsigned long addr, pfn;
pte_t *ptep;
for (addr = start; addr < end; addr += PAGE_SIZE) {
bool needs_flush = false;
/*
* The vma can contain pages that aren't present. Although
* the pte search is expensive, we need the pte to find the
* page pfn and to check whether the page should be flushed.
*/
ptep = get_ptep(vma->vm_mm, addr);
if (ptep) {
needs_flush = pte_needs_flush(*ptep);
pfn = pte_pfn(*ptep);
pte_unmap(ptep);
}
if (needs_flush) {
if (parisc_requires_coherency()) {
flush_user_cache_page(vma, addr);
} else {
if (WARN_ON(!pfn_valid(pfn)))
return;
__flush_cache_page(vma, addr, PFN_PHYS(pfn));
}
}
}
}
static inline unsigned long mm_total_size(struct mm_struct *mm)
{
struct vm_area_struct *vma;
unsigned long usize = 0;
VMA_ITERATOR(vmi, mm, 0);
for_each_vma(vmi, vma) {
if (usize >= parisc_cache_flush_threshold)
break;
usize += vma->vm_end - vma->vm_start;
}
return usize;
}
void flush_cache_mm(struct mm_struct *mm)
{
struct vm_area_struct *vma;
VMA_ITERATOR(vmi, mm, 0);
/*
* Flushing the whole cache on each cpu takes forever on
* rp3440, etc. So, avoid it if the mm isn't too big.
*
* Note that we must flush the entire cache on machines
* with aliasing caches to prevent random segmentation
* faults.
*/
if (!parisc_requires_coherency()
|| mm_total_size(mm) >= parisc_cache_flush_threshold) {
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
return;
flush_tlb_all();
flush_cache_all();
return;
}
/* Flush mm */
for_each_vma(vmi, vma)
flush_cache_pages(vma, vma->vm_start, vma->vm_end);
}
void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
{
if (!parisc_requires_coherency()
|| end - start >= parisc_cache_flush_threshold) {
if (WARN_ON(IS_ENABLED(CONFIG_SMP) && arch_irqs_disabled()))
return;
flush_tlb_range(vma, start, end);
flush_cache_all();
return;
}
flush_cache_pages(vma, start, end);
}
void flush_cache_page(struct vm_area_struct *vma, unsigned long vmaddr, unsigned long pfn)
{
if (WARN_ON(!pfn_valid(pfn)))
return;
if (parisc_requires_coherency())
flush_user_cache_page(vma, vmaddr);
else
__flush_cache_page(vma, vmaddr, PFN_PHYS(pfn));
}
void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
{
if (!PageAnon(page))
return;
if (parisc_requires_coherency()) {
if (vma->vm_flags & VM_SHARED)
flush_data_cache();
else
flush_user_cache_page(vma, vmaddr);
return;
}
flush_tlb_page(vma, vmaddr);
preempt_disable();
flush_dcache_page_asm(page_to_phys(page), vmaddr);
preempt_enable();
}
void flush_kernel_vmap_range(void *vaddr, int size)
{
unsigned long start = (unsigned long)vaddr;
unsigned long end = start + size;
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
(unsigned long)size >= parisc_cache_flush_threshold) {
flush_tlb_kernel_range(start, end);
flush_data_cache();
return;
}
flush_kernel_dcache_range_asm(start, end);
flush_tlb_kernel_range(start, end);
}
EXPORT_SYMBOL(flush_kernel_vmap_range);
void invalidate_kernel_vmap_range(void *vaddr, int size)
{
unsigned long start = (unsigned long)vaddr;
unsigned long end = start + size;
/* Ensure DMA is complete */
asm_syncdma();
if ((!IS_ENABLED(CONFIG_SMP) || !arch_irqs_disabled()) &&
(unsigned long)size >= parisc_cache_flush_threshold) {
flush_tlb_kernel_range(start, end);
flush_data_cache();
return;
}
purge_kernel_dcache_range_asm(start, end);
flush_tlb_kernel_range(start, end);
}
EXPORT_SYMBOL(invalidate_kernel_vmap_range);
SYSCALL_DEFINE3(cacheflush, unsigned long, addr, unsigned long, bytes,
unsigned int, cache)
{
unsigned long start, end;
ASM_EXCEPTIONTABLE_VAR(error);
if (bytes == 0)
return 0;
if (!access_ok((void __user *) addr, bytes))
return -EFAULT;
end = addr + bytes;
if (cache & DCACHE) {
start = addr;
__asm__ __volatile__ (
#ifdef CONFIG_64BIT
"1: cmpb,*<<,n %0,%2,1b\n"
#else
"1: cmpb,<<,n %0,%2,1b\n"
#endif
" fic,m %3(%4,%0)\n"
"2: sync\n"
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
: "+r" (start), "+r" (error)
: "r" (end), "r" (dcache_stride), "i" (SR_USER));
}
if (cache & ICACHE && error == 0) {
start = addr;
__asm__ __volatile__ (
#ifdef CONFIG_64BIT
"1: cmpb,*<<,n %0,%2,1b\n"
#else
"1: cmpb,<<,n %0,%2,1b\n"
#endif
" fdc,m %3(%4,%0)\n"
"2: sync\n"
ASM_EXCEPTIONTABLE_ENTRY_EFAULT(1b, 2b, "%1")
: "+r" (start), "+r" (error)
: "r" (end), "r" (icache_stride), "i" (SR_USER));
}
return error;
}