mirror of
https://github.com/raspberrypi/linux.git
synced 2025-12-15 22:41:38 +00:00
This commit allows progs to elide a null check on statically known map lookup keys. In other words, if the verifier can statically prove that the lookup will be in-bounds, allow the prog to drop the null check. This is useful for two reasons: 1. Large numbers of nullness checks (especially when they cannot fail) unnecessarily pushes prog towards BPF_COMPLEXITY_LIMIT_JMP_SEQ. 2. It forms a tighter contract between programmer and verifier. For (1), bpftrace is starting to make heavier use of percpu scratch maps. As a result, for user scripts with large number of unrolled loops, we are starting to hit jump complexity verification errors. These percpu lookups cannot fail anyways, as we only use static key values. Eliding nullness probably results in less work for verifier as well. For (2), percpu scratch maps are often used as a larger stack, as the currrent stack is limited to 512 bytes. In these situations, it is desirable for the programmer to express: "this lookup should never fail, and if it does, it means I messed up the code". By omitting the null check, the programmer can "ask" the verifier to double check the logic. Tests also have to be updated in sync with these changes, as the verifier is more efficient with this change. Notable, iters.c tests had to be changed to use a map type that still requires null checks, as it's exercising verifier tracking logic w.r.t iterators. Signed-off-by: Daniel Xu <dxu@dxuuu.xyz> Link: https://lore.kernel.org/r/68f3ea96ff3809a87e502a11a4bd30177fc5823e.1736886479.git.dxu@dxuuu.xyz Signed-off-by: Alexei Starovoitov <ast@kernel.org>
1516 lines
31 KiB
C
1516 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2023 Meta Platforms, Inc. and affiliates. */
|
|
|
|
#include <stdbool.h>
|
|
#include <linux/bpf.h>
|
|
#include <bpf/bpf_helpers.h>
|
|
#include "bpf_misc.h"
|
|
#include "bpf_compiler.h"
|
|
|
|
static volatile int zero = 0;
|
|
|
|
int my_pid;
|
|
int arr[256];
|
|
int small_arr[16] SEC(".data.small_arr");
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__uint(max_entries, 10);
|
|
__type(key, int);
|
|
__type(value, int);
|
|
} amap SEC(".maps");
|
|
|
|
#ifdef REAL_TEST
|
|
#define MY_PID_GUARD() if (my_pid != (bpf_get_current_pid_tgid() >> 32)) return 0
|
|
#else
|
|
#define MY_PID_GUARD() ({ })
|
|
#endif
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("math between map_value pointer and register with unbounded min value is not allowed")
|
|
int iter_err_unsafe_c_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v, i = zero; /* obscure initial value of i */
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 1000);
|
|
while ((v = bpf_iter_num_next(&it))) {
|
|
i++;
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
small_arr[i] = 123; /* invalid */
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("unbounded memory access")
|
|
int iter_err_unsafe_asm_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
asm volatile (
|
|
"r6 = %[zero];" /* iteration counter */
|
|
"r1 = %[it];" /* iterator state */
|
|
"r2 = 0;"
|
|
"r3 = 1000;"
|
|
"r4 = 1;"
|
|
"call %[bpf_iter_num_new];"
|
|
"loop:"
|
|
"r1 = %[it];"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto out;"
|
|
"r6 += 1;"
|
|
"goto loop;"
|
|
"out:"
|
|
"r1 = %[it];"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r1 = %[small_arr];"
|
|
"r2 = r6;"
|
|
"r2 <<= 2;"
|
|
"r1 += r2;"
|
|
"*(u32 *)(r1 + 0) = r6;" /* invalid */
|
|
:
|
|
: [it]"r"(&it),
|
|
[small_arr]"r"(small_arr),
|
|
[zero]"r"(zero),
|
|
__imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy)
|
|
: __clobber_common, "r6"
|
|
);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_while_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 3);
|
|
while ((v = bpf_iter_num_next(&it))) {
|
|
bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_while_loop_auto_cleanup(const void *ctx)
|
|
{
|
|
__attribute__((cleanup(bpf_iter_num_destroy))) struct bpf_iter_num it;
|
|
int *v;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 3);
|
|
while ((v = bpf_iter_num_next(&it))) {
|
|
bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
|
|
}
|
|
/* (!) no explicit bpf_iter_num_destroy() */
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_for_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 5, 10);
|
|
for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
|
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_bpf_for_each_macro(const void *ctx)
|
|
{
|
|
int *v;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_for_each(num, v, 5, 10) {
|
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_bpf_for_macro(const void *ctx)
|
|
{
|
|
int i;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_for(i, 5, 10) {
|
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", i);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_pragma_unroll_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v, i;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 2);
|
|
__pragma_loop_no_unroll
|
|
for (i = 0; i < 3; i++) {
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_manual_unroll_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 100, 200);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_multiple_sequential_loops(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v, i;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 3);
|
|
while ((v = bpf_iter_num_next(&it))) {
|
|
bpf_printk("ITER_BASIC: E1 VAL: v=%d", *v);
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
bpf_iter_num_new(&it, 5, 10);
|
|
for (v = bpf_iter_num_next(&it); v; v = bpf_iter_num_next(&it)) {
|
|
bpf_printk("ITER_BASIC: E2 VAL: v=%d", *v);
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
bpf_iter_num_new(&it, 0, 2);
|
|
__pragma_loop_no_unroll
|
|
for (i = 0; i < 3; i++) {
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E3 VAL: i=%d v=%d", i, v ? *v : -1);
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
bpf_iter_num_new(&it, 100, 200);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d", v ? *v : -1);
|
|
v = bpf_iter_num_next(&it);
|
|
bpf_printk("ITER_BASIC: E4 VAL: v=%d\n", v ? *v : -1);
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_limit_cond_break_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v, i = 0, sum = 0;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 10);
|
|
while ((v = bpf_iter_num_next(&it))) {
|
|
bpf_printk("ITER_SIMPLE: i=%d v=%d", i, *v);
|
|
sum += *v;
|
|
|
|
i++;
|
|
if (i > 3)
|
|
break;
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
bpf_printk("ITER_SIMPLE: sum=%d\n", sum);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_obfuscate_counter(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v, sum = 0;
|
|
/* Make i's initial value unknowable for verifier to prevent it from
|
|
* pruning if/else branch inside the loop body and marking i as precise.
|
|
*/
|
|
int i = zero;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 10);
|
|
while ((v = bpf_iter_num_next(&it))) {
|
|
int x;
|
|
|
|
i += 1;
|
|
|
|
/* If we initialized i as `int i = 0;` above, verifier would
|
|
* track that i becomes 1 on first iteration after increment
|
|
* above, and here verifier would eagerly prune else branch
|
|
* and mark i as precise, ruining open-coded iterator logic
|
|
* completely, as each next iteration would have a different
|
|
* *precise* value of i, and thus there would be no
|
|
* convergence of state. This would result in reaching maximum
|
|
* instruction limit, no matter what the limit is.
|
|
*/
|
|
if (i == 1)
|
|
x = 123;
|
|
else
|
|
x = i * 3 + 1;
|
|
|
|
bpf_printk("ITER_OBFUSCATE_COUNTER: i=%d v=%d x=%d", i, *v, x);
|
|
|
|
sum += x;
|
|
}
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
bpf_printk("ITER_OBFUSCATE_COUNTER: sum=%d\n", sum);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_search_loop(const void *ctx)
|
|
{
|
|
struct bpf_iter_num it;
|
|
int *v, *elem = NULL;
|
|
bool found = false;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_iter_num_new(&it, 0, 10);
|
|
|
|
while ((v = bpf_iter_num_next(&it))) {
|
|
bpf_printk("ITER_SEARCH_LOOP: v=%d", *v);
|
|
|
|
if (*v == 2) {
|
|
found = true;
|
|
elem = v;
|
|
barrier_var(elem);
|
|
}
|
|
}
|
|
|
|
/* should fail to verify if bpf_iter_num_destroy() is here */
|
|
|
|
if (found)
|
|
/* here found element will be wrong, we should have copied
|
|
* value to a variable, but here we want to make sure we can
|
|
* access memory after the loop anyways
|
|
*/
|
|
bpf_printk("ITER_SEARCH_LOOP: FOUND IT = %d!\n", *elem);
|
|
else
|
|
bpf_printk("ITER_SEARCH_LOOP: NOT FOUND IT!\n");
|
|
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_array_fill(const void *ctx)
|
|
{
|
|
int sum, i;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_for(i, 0, ARRAY_SIZE(arr)) {
|
|
arr[i] = i * 2;
|
|
}
|
|
|
|
sum = 0;
|
|
bpf_for(i, 0, ARRAY_SIZE(arr)) {
|
|
sum += arr[i];
|
|
}
|
|
|
|
bpf_printk("ITER_ARRAY_FILL: sum=%d (should be %d)\n", sum, 255 * 256);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int arr2d[4][5];
|
|
static int arr2d_row_sums[4];
|
|
static int arr2d_col_sums[5];
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_nested_iters(const void *ctx)
|
|
{
|
|
int sum, row, col;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
bpf_for( col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
arr2d[row][col] = row * col;
|
|
}
|
|
}
|
|
|
|
/* zero-initialize sums */
|
|
sum = 0;
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
arr2d_row_sums[row] = 0;
|
|
}
|
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
arr2d_col_sums[col] = 0;
|
|
}
|
|
|
|
/* calculate sums */
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
sum += arr2d[row][col];
|
|
arr2d_row_sums[row] += arr2d[row][col];
|
|
arr2d_col_sums[col] += arr2d[row][col];
|
|
}
|
|
}
|
|
|
|
bpf_printk("ITER_NESTED_ITERS: total sum=%d", sum);
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
bpf_printk("ITER_NESTED_ITERS: row #%d sum=%d", row, arr2d_row_sums[row]);
|
|
}
|
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
bpf_printk("ITER_NESTED_ITERS: col #%d sum=%d%s",
|
|
col, arr2d_col_sums[col],
|
|
col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_nested_deeply_iters(const void *ctx)
|
|
{
|
|
int sum = 0;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_repeat(10) {
|
|
bpf_repeat(10) {
|
|
bpf_repeat(10) {
|
|
bpf_repeat(10) {
|
|
bpf_repeat(10) {
|
|
sum += 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* validate that we can break from inside bpf_repeat() */
|
|
break;
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
static __noinline void fill_inner_dimension(int row)
|
|
{
|
|
int col;
|
|
|
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
arr2d[row][col] = row * col;
|
|
}
|
|
}
|
|
|
|
static __noinline int sum_inner_dimension(int row)
|
|
{
|
|
int sum = 0, col;
|
|
|
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
sum += arr2d[row][col];
|
|
arr2d_row_sums[row] += arr2d[row][col];
|
|
arr2d_col_sums[col] += arr2d[row][col];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_subprog_iters(const void *ctx)
|
|
{
|
|
int sum, row, col;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
fill_inner_dimension(row);
|
|
}
|
|
|
|
/* zero-initialize sums */
|
|
sum = 0;
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
arr2d_row_sums[row] = 0;
|
|
}
|
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
arr2d_col_sums[col] = 0;
|
|
}
|
|
|
|
/* calculate sums */
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
sum += sum_inner_dimension(row);
|
|
}
|
|
|
|
bpf_printk("ITER_SUBPROG_ITERS: total sum=%d", sum);
|
|
bpf_for(row, 0, ARRAY_SIZE(arr2d)) {
|
|
bpf_printk("ITER_SUBPROG_ITERS: row #%d sum=%d",
|
|
row, arr2d_row_sums[row]);
|
|
}
|
|
bpf_for(col, 0, ARRAY_SIZE(arr2d[0])) {
|
|
bpf_printk("ITER_SUBPROG_ITERS: col #%d sum=%d%s",
|
|
col, arr2d_col_sums[col],
|
|
col == ARRAY_SIZE(arr2d[0]) - 1 ? "\n" : "");
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct {
|
|
__uint(type, BPF_MAP_TYPE_HASH);
|
|
__type(key, int);
|
|
__type(value, int);
|
|
__uint(max_entries, 1000);
|
|
} hash_map SEC(".maps");
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid mem access 'scalar'")
|
|
int iter_err_too_permissive1(const void *ctx)
|
|
{
|
|
int *map_val = NULL;
|
|
int key = 0;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
map_val = bpf_map_lookup_elem(&hash_map, &key);
|
|
if (!map_val)
|
|
return 0;
|
|
|
|
bpf_repeat(1000000) {
|
|
map_val = NULL;
|
|
}
|
|
|
|
*map_val = 123;
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid mem access 'map_value_or_null'")
|
|
int iter_err_too_permissive2(const void *ctx)
|
|
{
|
|
int *map_val = NULL;
|
|
int key = 0;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
map_val = bpf_map_lookup_elem(&hash_map, &key);
|
|
if (!map_val)
|
|
return 0;
|
|
|
|
bpf_repeat(1000000) {
|
|
map_val = bpf_map_lookup_elem(&hash_map, &key);
|
|
}
|
|
|
|
*map_val = 123;
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure __msg("invalid mem access 'map_value_or_null'")
|
|
int iter_err_too_permissive3(const void *ctx)
|
|
{
|
|
int *map_val = NULL;
|
|
int key = 0;
|
|
bool found = false;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_repeat(1000000) {
|
|
map_val = bpf_map_lookup_elem(&hash_map, &key);
|
|
found = true;
|
|
}
|
|
|
|
if (found)
|
|
*map_val = 123;
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_tricky_but_fine(const void *ctx)
|
|
{
|
|
int *map_val = NULL;
|
|
int key = 0;
|
|
bool found = false;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
bpf_repeat(1000000) {
|
|
map_val = bpf_map_lookup_elem(&hash_map, &key);
|
|
if (map_val) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (found)
|
|
*map_val = 123;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define __bpf_memzero(p, sz) bpf_probe_read_kernel((p), (sz), 0)
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_stack_array_loop(const void *ctx)
|
|
{
|
|
long arr1[16], arr2[16], sum = 0;
|
|
int i;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
/* zero-init arr1 and arr2 in such a way that verifier doesn't know
|
|
* it's all zeros; if we don't do that, we'll make BPF verifier track
|
|
* all combination of zero/non-zero stack slots for arr1/arr2, which
|
|
* will lead to O(2^(ARRAY_SIZE(arr1)+ARRAY_SIZE(arr2))) different
|
|
* states
|
|
*/
|
|
__bpf_memzero(arr1, sizeof(arr1));
|
|
__bpf_memzero(arr2, sizeof(arr1));
|
|
|
|
/* validate that we can break and continue when using bpf_for() */
|
|
bpf_for(i, 0, ARRAY_SIZE(arr1)) {
|
|
if (i & 1) {
|
|
arr1[i] = i;
|
|
continue;
|
|
} else {
|
|
arr2[i] = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bpf_for(i, 0, ARRAY_SIZE(arr1)) {
|
|
sum += arr1[i] + arr2[i];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
static __noinline void fill(struct bpf_iter_num *it, int *arr, __u32 n, int mul)
|
|
{
|
|
int *t, i;
|
|
|
|
while ((t = bpf_iter_num_next(it))) {
|
|
i = *t;
|
|
if (i >= n)
|
|
break;
|
|
arr[i] = i * mul;
|
|
}
|
|
}
|
|
|
|
static __noinline int sum(struct bpf_iter_num *it, int *arr, __u32 n)
|
|
{
|
|
int *t, i, sum = 0;
|
|
|
|
while ((t = bpf_iter_num_next(it))) {
|
|
i = *t;
|
|
if ((__u32)i >= n)
|
|
break;
|
|
sum += arr[i];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_pass_iter_ptr_to_subprog(const void *ctx)
|
|
{
|
|
int arr1[16], arr2[32];
|
|
struct bpf_iter_num it;
|
|
int n, sum1, sum2;
|
|
|
|
MY_PID_GUARD();
|
|
|
|
/* fill arr1 */
|
|
n = ARRAY_SIZE(arr1);
|
|
bpf_iter_num_new(&it, 0, n);
|
|
fill(&it, arr1, n, 2);
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
/* fill arr2 */
|
|
n = ARRAY_SIZE(arr2);
|
|
bpf_iter_num_new(&it, 0, n);
|
|
fill(&it, arr2, n, 10);
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
/* sum arr1 */
|
|
n = ARRAY_SIZE(arr1);
|
|
bpf_iter_num_new(&it, 0, n);
|
|
sum1 = sum(&it, arr1, n);
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
/* sum arr2 */
|
|
n = ARRAY_SIZE(arr2);
|
|
bpf_iter_num_new(&it, 0, n);
|
|
sum2 = sum(&it, arr2, n);
|
|
bpf_iter_num_destroy(&it);
|
|
|
|
bpf_printk("sum1=%d, sum2=%d", sum1, sum2);
|
|
|
|
return 0;
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure
|
|
__msg("R1 type=scalar expected=fp")
|
|
__naked int delayed_read_mark(void)
|
|
{
|
|
/* This is equivalent to C program below.
|
|
* The call to bpf_iter_num_next() is reachable with r7 values &fp[-16] and 0xdead.
|
|
* State with r7=&fp[-16] is visited first and follows r6 != 42 ... continue branch.
|
|
* At this point iterator next() call is reached with r7 that has no read mark.
|
|
* Loop body with r7=0xdead would only be visited if verifier would decide to continue
|
|
* with second loop iteration. Absence of read mark on r7 might affect state
|
|
* equivalent logic used for iterator convergence tracking.
|
|
*
|
|
* r7 = &fp[-16]
|
|
* fp[-16] = 0
|
|
* r6 = bpf_get_prandom_u32()
|
|
* bpf_iter_num_new(&fp[-8], 0, 10)
|
|
* while (bpf_iter_num_next(&fp[-8])) {
|
|
* r6++
|
|
* if (r6 != 42) {
|
|
* r7 = 0xdead
|
|
* continue;
|
|
* }
|
|
* bpf_probe_read_user(r7, 8, 0xdeadbeef); // this is not safe
|
|
* }
|
|
* bpf_iter_num_destroy(&fp[-8])
|
|
* return 0
|
|
*/
|
|
asm volatile (
|
|
"r7 = r10;"
|
|
"r7 += -16;"
|
|
"r0 = 0;"
|
|
"*(u64 *)(r7 + 0) = r0;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"r6 = r0;"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"1:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto 2f;"
|
|
"r6 += 1;"
|
|
"if r6 != 42 goto 3f;"
|
|
"r7 = 0xdead;"
|
|
"goto 1b;"
|
|
"3:"
|
|
"r1 = r7;"
|
|
"r2 = 8;"
|
|
"r3 = 0xdeadbeef;"
|
|
"call %[bpf_probe_read_user];"
|
|
"goto 1b;"
|
|
"2:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_get_prandom_u32),
|
|
__imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy),
|
|
__imm(bpf_probe_read_user)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure
|
|
__msg("math between fp pointer and register with unbounded")
|
|
__naked int delayed_precision_mark(void)
|
|
{
|
|
/* This is equivalent to C program below.
|
|
* The test is similar to delayed_iter_mark but verifies that incomplete
|
|
* precision don't fool verifier.
|
|
* The call to bpf_iter_num_next() is reachable with r7 values -16 and -32.
|
|
* State with r7=-16 is visited first and follows r6 != 42 ... continue branch.
|
|
* At this point iterator next() call is reached with r7 that has no read
|
|
* and precision marks.
|
|
* Loop body with r7=-32 would only be visited if verifier would decide to continue
|
|
* with second loop iteration. Absence of precision mark on r7 might affect state
|
|
* equivalent logic used for iterator convergence tracking.
|
|
*
|
|
* r8 = 0
|
|
* fp[-16] = 0
|
|
* r7 = -16
|
|
* r6 = bpf_get_prandom_u32()
|
|
* bpf_iter_num_new(&fp[-8], 0, 10)
|
|
* while (bpf_iter_num_next(&fp[-8])) {
|
|
* if (r6 != 42) {
|
|
* r7 = -32
|
|
* r6 = bpf_get_prandom_u32()
|
|
* continue;
|
|
* }
|
|
* r0 = r10
|
|
* r0 += r7
|
|
* r8 = *(u64 *)(r0 + 0) // this is not safe
|
|
* r6 = bpf_get_prandom_u32()
|
|
* }
|
|
* bpf_iter_num_destroy(&fp[-8])
|
|
* return r8
|
|
*/
|
|
asm volatile (
|
|
"r8 = 0;"
|
|
"*(u64 *)(r10 - 16) = r8;"
|
|
"r7 = -16;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"r6 = r0;"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"1:"
|
|
"r1 = r10;"
|
|
"r1 += -8;\n"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto 2f;"
|
|
"if r6 != 42 goto 3f;"
|
|
"r7 = -33;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"r6 = r0;"
|
|
"goto 1b;\n"
|
|
"3:"
|
|
"r0 = r10;"
|
|
"r0 += r7;"
|
|
"r8 = *(u64 *)(r0 + 0);"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"r6 = r0;"
|
|
"goto 1b;\n"
|
|
"2:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = r8;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_get_prandom_u32),
|
|
__imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy),
|
|
__imm(bpf_probe_read_user)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure
|
|
__msg("math between fp pointer and register with unbounded")
|
|
__flag(BPF_F_TEST_STATE_FREQ)
|
|
__naked int loop_state_deps1(void)
|
|
{
|
|
/* This is equivalent to C program below.
|
|
*
|
|
* The case turns out to be tricky in a sense that:
|
|
* - states with c=-25 are explored only on a second iteration
|
|
* of the outer loop;
|
|
* - states with read+precise mark on c are explored only on
|
|
* second iteration of the inner loop and in a state which
|
|
* is pushed to states stack first.
|
|
*
|
|
* Depending on the details of iterator convergence logic
|
|
* verifier might stop states traversal too early and miss
|
|
* unsafe c=-25 memory access.
|
|
*
|
|
* j = iter_new(); // fp[-16]
|
|
* a = 0; // r6
|
|
* b = 0; // r7
|
|
* c = -24; // r8
|
|
* while (iter_next(j)) {
|
|
* i = iter_new(); // fp[-8]
|
|
* a = 0; // r6
|
|
* b = 0; // r7
|
|
* while (iter_next(i)) {
|
|
* if (a == 1) {
|
|
* a = 0;
|
|
* b = 1;
|
|
* } else if (a == 0) {
|
|
* a = 1;
|
|
* if (random() == 42)
|
|
* continue;
|
|
* if (b == 1) {
|
|
* *(r10 + c) = 7; // this is not safe
|
|
* iter_destroy(i);
|
|
* iter_destroy(j);
|
|
* return;
|
|
* }
|
|
* }
|
|
* }
|
|
* iter_destroy(i);
|
|
* a = 0;
|
|
* b = 0;
|
|
* c = -25;
|
|
* }
|
|
* iter_destroy(j);
|
|
* return;
|
|
*/
|
|
asm volatile (
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"r6 = 0;"
|
|
"r7 = 0;"
|
|
"r8 = -24;"
|
|
"j_loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto j_loop_end_%=;"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"r6 = 0;"
|
|
"r7 = 0;"
|
|
"i_loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto i_loop_end_%=;"
|
|
"check_one_r6_%=:"
|
|
"if r6 != 1 goto check_zero_r6_%=;"
|
|
"r6 = 0;"
|
|
"r7 = 1;"
|
|
"goto i_loop_%=;"
|
|
"check_zero_r6_%=:"
|
|
"if r6 != 0 goto i_loop_%=;"
|
|
"r6 = 1;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"if r0 != 42 goto check_one_r7_%=;"
|
|
"goto i_loop_%=;"
|
|
"check_one_r7_%=:"
|
|
"if r7 != 1 goto i_loop_%=;"
|
|
"r0 = r10;"
|
|
"r0 += r8;"
|
|
"r1 = 7;"
|
|
"*(u64 *)(r0 + 0) = r1;"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
"i_loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r6 = 0;"
|
|
"r7 = 0;"
|
|
"r8 = -25;"
|
|
"goto j_loop_%=;"
|
|
"j_loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_get_prandom_u32),
|
|
__imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__failure
|
|
__msg("math between fp pointer and register with unbounded")
|
|
__flag(BPF_F_TEST_STATE_FREQ)
|
|
__naked int loop_state_deps2(void)
|
|
{
|
|
/* This is equivalent to C program below.
|
|
*
|
|
* The case turns out to be tricky in a sense that:
|
|
* - states with read+precise mark on c are explored only on a second
|
|
* iteration of the first inner loop and in a state which is pushed to
|
|
* states stack first.
|
|
* - states with c=-25 are explored only on a second iteration of the
|
|
* second inner loop and in a state which is pushed to states stack
|
|
* first.
|
|
*
|
|
* Depending on the details of iterator convergence logic
|
|
* verifier might stop states traversal too early and miss
|
|
* unsafe c=-25 memory access.
|
|
*
|
|
* j = iter_new(); // fp[-16]
|
|
* a = 0; // r6
|
|
* b = 0; // r7
|
|
* c = -24; // r8
|
|
* while (iter_next(j)) {
|
|
* i = iter_new(); // fp[-8]
|
|
* a = 0; // r6
|
|
* b = 0; // r7
|
|
* while (iter_next(i)) {
|
|
* if (a == 1) {
|
|
* a = 0;
|
|
* b = 1;
|
|
* } else if (a == 0) {
|
|
* a = 1;
|
|
* if (random() == 42)
|
|
* continue;
|
|
* if (b == 1) {
|
|
* *(r10 + c) = 7; // this is not safe
|
|
* iter_destroy(i);
|
|
* iter_destroy(j);
|
|
* return;
|
|
* }
|
|
* }
|
|
* }
|
|
* iter_destroy(i);
|
|
* i = iter_new(); // fp[-8]
|
|
* a = 0; // r6
|
|
* b = 0; // r7
|
|
* while (iter_next(i)) {
|
|
* if (a == 1) {
|
|
* a = 0;
|
|
* b = 1;
|
|
* } else if (a == 0) {
|
|
* a = 1;
|
|
* if (random() == 42)
|
|
* continue;
|
|
* if (b == 1) {
|
|
* a = 0;
|
|
* c = -25;
|
|
* }
|
|
* }
|
|
* }
|
|
* iter_destroy(i);
|
|
* }
|
|
* iter_destroy(j);
|
|
* return;
|
|
*/
|
|
asm volatile (
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"r6 = 0;"
|
|
"r7 = 0;"
|
|
"r8 = -24;"
|
|
"j_loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto j_loop_end_%=;"
|
|
|
|
/* first inner loop */
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"r6 = 0;"
|
|
"r7 = 0;"
|
|
"i_loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto i_loop_end_%=;"
|
|
"check_one_r6_%=:"
|
|
"if r6 != 1 goto check_zero_r6_%=;"
|
|
"r6 = 0;"
|
|
"r7 = 1;"
|
|
"goto i_loop_%=;"
|
|
"check_zero_r6_%=:"
|
|
"if r6 != 0 goto i_loop_%=;"
|
|
"r6 = 1;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"if r0 != 42 goto check_one_r7_%=;"
|
|
"goto i_loop_%=;"
|
|
"check_one_r7_%=:"
|
|
"if r7 != 1 goto i_loop_%=;"
|
|
"r0 = r10;"
|
|
"r0 += r8;"
|
|
"r1 = 7;"
|
|
"*(u64 *)(r0 + 0) = r1;"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
"i_loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
|
|
/* second inner loop */
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"r6 = 0;"
|
|
"r7 = 0;"
|
|
"i2_loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto i2_loop_end_%=;"
|
|
"check2_one_r6_%=:"
|
|
"if r6 != 1 goto check2_zero_r6_%=;"
|
|
"r6 = 0;"
|
|
"r7 = 1;"
|
|
"goto i2_loop_%=;"
|
|
"check2_zero_r6_%=:"
|
|
"if r6 != 0 goto i2_loop_%=;"
|
|
"r6 = 1;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"if r0 != 42 goto check2_one_r7_%=;"
|
|
"goto i2_loop_%=;"
|
|
"check2_one_r7_%=:"
|
|
"if r7 != 1 goto i2_loop_%=;"
|
|
"r6 = 0;"
|
|
"r8 = -25;"
|
|
"goto i2_loop_%=;"
|
|
"i2_loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
|
|
"r6 = 0;"
|
|
"r7 = 0;"
|
|
"goto j_loop_%=;"
|
|
"j_loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -16;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_get_prandom_u32),
|
|
__imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__success
|
|
__naked int triple_continue(void)
|
|
{
|
|
/* This is equivalent to C program below.
|
|
* High branching factor of the loop body turned out to be
|
|
* problematic for one of the iterator convergence tracking
|
|
* algorithms explored.
|
|
*
|
|
* r6 = bpf_get_prandom_u32()
|
|
* bpf_iter_num_new(&fp[-8], 0, 10)
|
|
* while (bpf_iter_num_next(&fp[-8])) {
|
|
* if (bpf_get_prandom_u32() != 42)
|
|
* continue;
|
|
* if (bpf_get_prandom_u32() != 42)
|
|
* continue;
|
|
* if (bpf_get_prandom_u32() != 42)
|
|
* continue;
|
|
* r0 += 0;
|
|
* }
|
|
* bpf_iter_num_destroy(&fp[-8])
|
|
* return 0
|
|
*/
|
|
asm volatile (
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto loop_end_%=;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"if r0 != 42 goto loop_%=;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"if r0 != 42 goto loop_%=;"
|
|
"call %[bpf_get_prandom_u32];"
|
|
"if r0 != 42 goto loop_%=;"
|
|
"r0 += 0;"
|
|
"goto loop_%=;"
|
|
"loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_get_prandom_u32),
|
|
__imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
SEC("?raw_tp")
|
|
__success
|
|
__naked int widen_spill(void)
|
|
{
|
|
/* This is equivalent to C program below.
|
|
* The counter is stored in fp[-16], if this counter is not widened
|
|
* verifier states representing loop iterations would never converge.
|
|
*
|
|
* fp[-16] = 0
|
|
* bpf_iter_num_new(&fp[-8], 0, 10)
|
|
* while (bpf_iter_num_next(&fp[-8])) {
|
|
* r0 = fp[-16];
|
|
* r0 += 1;
|
|
* fp[-16] = r0;
|
|
* }
|
|
* bpf_iter_num_destroy(&fp[-8])
|
|
* return 0
|
|
*/
|
|
asm volatile (
|
|
"r0 = 0;"
|
|
"*(u64 *)(r10 - 16) = r0;"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto loop_end_%=;"
|
|
"r0 = *(u64 *)(r10 - 16);"
|
|
"r0 += 1;"
|
|
"*(u64 *)(r10 - 16) = r0;"
|
|
"goto loop_%=;"
|
|
"loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
__naked int checkpoint_states_deletion(void)
|
|
{
|
|
/* This is equivalent to C program below.
|
|
*
|
|
* int *a, *b, *c, *d, *e, *f;
|
|
* int i, sum = 0;
|
|
* bpf_for(i, 0, 10) {
|
|
* a = bpf_map_lookup_elem(&amap, &i);
|
|
* b = bpf_map_lookup_elem(&amap, &i);
|
|
* c = bpf_map_lookup_elem(&amap, &i);
|
|
* d = bpf_map_lookup_elem(&amap, &i);
|
|
* e = bpf_map_lookup_elem(&amap, &i);
|
|
* f = bpf_map_lookup_elem(&amap, &i);
|
|
* if (a) sum += 1;
|
|
* if (b) sum += 1;
|
|
* if (c) sum += 1;
|
|
* if (d) sum += 1;
|
|
* if (e) sum += 1;
|
|
* if (f) sum += 1;
|
|
* }
|
|
* return 0;
|
|
*
|
|
* The body of the loop spawns multiple simulation paths
|
|
* with different combination of NULL/non-NULL information for a/b/c/d/e/f.
|
|
* Each combination is unique from states_equal() point of view.
|
|
* Explored states checkpoint is created after each iterator next call.
|
|
* Iterator convergence logic expects that eventually current state
|
|
* would get equal to one of the explored states and thus loop
|
|
* exploration would be finished (at-least for a specific path).
|
|
* Verifier evicts explored states with high miss to hit ratio
|
|
* to to avoid comparing current state with too many explored
|
|
* states per instruction.
|
|
* This test is designed to "stress test" eviction policy defined using formula:
|
|
*
|
|
* sl->miss_cnt > sl->hit_cnt * N + N // if true sl->state is evicted
|
|
*
|
|
* Currently N is set to 64, which allows for 6 variables in this test.
|
|
*/
|
|
asm volatile (
|
|
"r6 = 0;" /* a */
|
|
"r7 = 0;" /* b */
|
|
"r8 = 0;" /* c */
|
|
"*(u64 *)(r10 - 24) = r6;" /* d */
|
|
"*(u64 *)(r10 - 32) = r6;" /* e */
|
|
"*(u64 *)(r10 - 40) = r6;" /* f */
|
|
"r9 = 0;" /* sum */
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"r2 = 0;"
|
|
"r3 = 10;"
|
|
"call %[bpf_iter_num_new];"
|
|
"loop_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_next];"
|
|
"if r0 == 0 goto loop_end_%=;"
|
|
|
|
"*(u64 *)(r10 - 16) = r0;"
|
|
|
|
"r1 = %[amap] ll;"
|
|
"r2 = r10;"
|
|
"r2 += -16;"
|
|
"call %[bpf_map_lookup_elem];"
|
|
"r6 = r0;"
|
|
|
|
"r1 = %[amap] ll;"
|
|
"r2 = r10;"
|
|
"r2 += -16;"
|
|
"call %[bpf_map_lookup_elem];"
|
|
"r7 = r0;"
|
|
|
|
"r1 = %[amap] ll;"
|
|
"r2 = r10;"
|
|
"r2 += -16;"
|
|
"call %[bpf_map_lookup_elem];"
|
|
"r8 = r0;"
|
|
|
|
"r1 = %[amap] ll;"
|
|
"r2 = r10;"
|
|
"r2 += -16;"
|
|
"call %[bpf_map_lookup_elem];"
|
|
"*(u64 *)(r10 - 24) = r0;"
|
|
|
|
"r1 = %[amap] ll;"
|
|
"r2 = r10;"
|
|
"r2 += -16;"
|
|
"call %[bpf_map_lookup_elem];"
|
|
"*(u64 *)(r10 - 32) = r0;"
|
|
|
|
"r1 = %[amap] ll;"
|
|
"r2 = r10;"
|
|
"r2 += -16;"
|
|
"call %[bpf_map_lookup_elem];"
|
|
"*(u64 *)(r10 - 40) = r0;"
|
|
|
|
"if r6 == 0 goto +1;"
|
|
"r9 += 1;"
|
|
"if r7 == 0 goto +1;"
|
|
"r9 += 1;"
|
|
"if r8 == 0 goto +1;"
|
|
"r9 += 1;"
|
|
"r0 = *(u64 *)(r10 - 24);"
|
|
"if r0 == 0 goto +1;"
|
|
"r9 += 1;"
|
|
"r0 = *(u64 *)(r10 - 32);"
|
|
"if r0 == 0 goto +1;"
|
|
"r9 += 1;"
|
|
"r0 = *(u64 *)(r10 - 40);"
|
|
"if r0 == 0 goto +1;"
|
|
"r9 += 1;"
|
|
|
|
"goto loop_%=;"
|
|
"loop_end_%=:"
|
|
"r1 = r10;"
|
|
"r1 += -8;"
|
|
"call %[bpf_iter_num_destroy];"
|
|
"r0 = 0;"
|
|
"exit;"
|
|
:
|
|
: __imm(bpf_map_lookup_elem),
|
|
__imm(bpf_iter_num_new),
|
|
__imm(bpf_iter_num_next),
|
|
__imm(bpf_iter_num_destroy),
|
|
__imm_addr(amap)
|
|
: __clobber_all
|
|
);
|
|
}
|
|
|
|
struct {
|
|
int data[32];
|
|
int n;
|
|
} loop_data;
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_arr_with_actual_elem_count(const void *ctx)
|
|
{
|
|
int i, n = loop_data.n, sum = 0;
|
|
|
|
if (n > ARRAY_SIZE(loop_data.data))
|
|
return 0;
|
|
|
|
bpf_for(i, 0, n) {
|
|
/* no rechecking of i against ARRAY_SIZE(loop_data.n) */
|
|
sum += loop_data.data[i];
|
|
}
|
|
|
|
return sum;
|
|
}
|
|
|
|
__u32 upper, select_n, result;
|
|
__u64 global;
|
|
|
|
static __noinline bool nest_2(char *str)
|
|
{
|
|
/* some insns (including branch insns) to ensure stacksafe() is triggered
|
|
* in nest_2(). This way, stacksafe() can compare frame associated with nest_1().
|
|
*/
|
|
if (str[0] == 't')
|
|
return true;
|
|
if (str[1] == 'e')
|
|
return true;
|
|
if (str[2] == 's')
|
|
return true;
|
|
if (str[3] == 't')
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static __noinline bool nest_1(int n)
|
|
{
|
|
/* case 0: allocate stack, case 1: no allocate stack */
|
|
switch (n) {
|
|
case 0: {
|
|
char comm[16];
|
|
|
|
if (bpf_get_current_comm(comm, 16))
|
|
return false;
|
|
return nest_2(comm);
|
|
}
|
|
case 1:
|
|
return nest_2((char *)&global);
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__success
|
|
int iter_subprog_check_stacksafe(const void *ctx)
|
|
{
|
|
long i;
|
|
|
|
bpf_for(i, 0, upper) {
|
|
if (!nest_1(select_n)) {
|
|
result = 1;
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
result = 2;
|
|
return 0;
|
|
}
|
|
|
|
struct bpf_iter_num global_it;
|
|
|
|
SEC("raw_tp")
|
|
__failure __msg("arg#0 expected pointer to an iterator on stack")
|
|
int iter_new_bad_arg(const void *ctx)
|
|
{
|
|
bpf_iter_num_new(&global_it, 0, 1);
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__failure __msg("arg#0 expected pointer to an iterator on stack")
|
|
int iter_next_bad_arg(const void *ctx)
|
|
{
|
|
bpf_iter_num_next(&global_it);
|
|
return 0;
|
|
}
|
|
|
|
SEC("raw_tp")
|
|
__failure __msg("arg#0 expected pointer to an iterator on stack")
|
|
int iter_destroy_bad_arg(const void *ctx)
|
|
{
|
|
bpf_iter_num_destroy(&global_it);
|
|
return 0;
|
|
}
|
|
|
|
char _license[] SEC("license") = "GPL";
|