mirror of
https://github.com/raspberrypi/linux.git
synced 2026-01-02 07:43:34 +00:00
When steering MCR register ranges of type "DSS," the group_id and instance_id values are calculated by dividing the DSS pool according to the size of a gslice or cslice, depending on the platform. These values haven't changed much on past platforms, so we've been able to hardcode the proper divisor so far. However the layout may not be so fixed on future platforms so the proper, future-proof way to determine this is by using some of the attributes from the GuC's hwconfig table. The hwconfig has two attributes reflecting the architectural maximum slice and subslice counts (i.e., before any fusing is considered) that can be used for the purposes of calculating MCR steering targets. If the hwconfig is lacking the necessary values (which should only be possible on older platforms before these attributes were added), we can still fall back to the old hardcoded values. Going forward the hwconfig is expected to always provide the information we need on newer platforms, and any failure to do so will be considered a bug in the firmware that will prevent us from switching to the buggy firmware release. It's worth noting that over time GuC's hwconfig has provided a couple different keys with similar-sounding descriptions. For our purposes here, we only trust the newer key "70" which has supplanted the similarly-named key "2" that existed on older platforms. Bspec: 73210 Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Jonathan Cavitt <jonathan.cavitt@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20240815172602.2729146-4-matthew.d.roper@intel.com
779 lines
25 KiB
C
779 lines
25 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2022 Intel Corporation
|
|
*/
|
|
|
|
#include "xe_gt_mcr.h"
|
|
|
|
#include "regs/xe_gt_regs.h"
|
|
#include "xe_assert.h"
|
|
#include "xe_gt.h"
|
|
#include "xe_gt_printk.h"
|
|
#include "xe_gt_topology.h"
|
|
#include "xe_gt_types.h"
|
|
#include "xe_guc_hwconfig.h"
|
|
#include "xe_mmio.h"
|
|
#include "xe_sriov.h"
|
|
|
|
/**
|
|
* DOC: GT Multicast/Replicated (MCR) Register Support
|
|
*
|
|
* Some GT registers are designed as "multicast" or "replicated" registers:
|
|
* multiple instances of the same register share a single MMIO offset. MCR
|
|
* registers are generally used when the hardware needs to potentially track
|
|
* independent values of a register per hardware unit (e.g., per-subslice,
|
|
* per-L3bank, etc.). The specific types of replication that exist vary
|
|
* per-platform.
|
|
*
|
|
* MMIO accesses to MCR registers are controlled according to the settings
|
|
* programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR
|
|
* registers can be done in either multicast (a single write updates all
|
|
* instances of the register to the same value) or unicast (a write updates only
|
|
* one specific instance) form. Reads of MCR registers always operate in a
|
|
* unicast manner regardless of how the multicast/unicast bit is set in
|
|
* MCR_SELECTOR. Selection of a specific MCR instance for unicast operations is
|
|
* referred to as "steering."
|
|
*
|
|
* If MCR register operations are steered toward a hardware unit that is
|
|
* fused off or currently powered down due to power gating, the MMIO operation
|
|
* is "terminated" by the hardware. Terminated read operations will return a
|
|
* value of zero and terminated unicast write operations will be silently
|
|
* ignored. During device initialization, the goal of the various
|
|
* ``init_steering_*()`` functions is to apply the platform-specific rules for
|
|
* each MCR register type to identify a steering target that will select a
|
|
* non-terminated instance.
|
|
*
|
|
* MCR registers are not available on Virtual Function (VF).
|
|
*/
|
|
|
|
#define STEER_SEMAPHORE XE_REG(0xFD0)
|
|
|
|
static inline struct xe_reg to_xe_reg(struct xe_reg_mcr reg_mcr)
|
|
{
|
|
return reg_mcr.__reg;
|
|
}
|
|
|
|
enum {
|
|
MCR_OP_READ,
|
|
MCR_OP_WRITE
|
|
};
|
|
|
|
static const struct xe_mmio_range xelp_l3bank_steering_table[] = {
|
|
{ 0x00B100, 0x00B3FF },
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xehp_l3bank_steering_table[] = {
|
|
{ 0x008C80, 0x008CFF },
|
|
{ 0x00B100, 0x00B3FF },
|
|
{},
|
|
};
|
|
|
|
/*
|
|
* Although the bspec lists more "MSLICE" ranges than shown here, some of those
|
|
* are of a "GAM" subclass that has special rules and doesn't need to be
|
|
* included here.
|
|
*/
|
|
static const struct xe_mmio_range xehp_mslice_steering_table[] = {
|
|
{ 0x00DD00, 0x00DDFF },
|
|
{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xehp_lncf_steering_table[] = {
|
|
{ 0x00B000, 0x00B0FF },
|
|
{ 0x00D880, 0x00D8FF },
|
|
{},
|
|
};
|
|
|
|
/*
|
|
* We have several types of MCR registers where steering to (0,0) will always
|
|
* provide us with a non-terminated value. We'll stick them all in the same
|
|
* table for simplicity.
|
|
*/
|
|
static const struct xe_mmio_range xehpc_instance0_steering_table[] = {
|
|
{ 0x004000, 0x004AFF }, /* HALF-BSLICE */
|
|
{ 0x008800, 0x00887F }, /* CC */
|
|
{ 0x008A80, 0x008AFF }, /* TILEPSMI */
|
|
{ 0x00B000, 0x00B0FF }, /* HALF-BSLICE */
|
|
{ 0x00B100, 0x00B3FF }, /* L3BANK */
|
|
{ 0x00C800, 0x00CFFF }, /* HALF-BSLICE */
|
|
{ 0x00D800, 0x00D8FF }, /* HALF-BSLICE */
|
|
{ 0x00DD00, 0x00DDFF }, /* BSLICE */
|
|
{ 0x00E900, 0x00E9FF }, /* HALF-BSLICE */
|
|
{ 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */
|
|
{ 0x00F000, 0x00FFFF }, /* HALF-BSLICE */
|
|
{ 0x024180, 0x0241FF }, /* HALF-BSLICE */
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xelpg_instance0_steering_table[] = {
|
|
{ 0x000B00, 0x000BFF }, /* SQIDI */
|
|
{ 0x001000, 0x001FFF }, /* SQIDI */
|
|
{ 0x004000, 0x0048FF }, /* GAM */
|
|
{ 0x008700, 0x0087FF }, /* SQIDI */
|
|
{ 0x00B000, 0x00B0FF }, /* NODE */
|
|
{ 0x00C800, 0x00CFFF }, /* GAM */
|
|
{ 0x00D880, 0x00D8FF }, /* NODE */
|
|
{ 0x00DD00, 0x00DDFF }, /* OAAL2 */
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xelpg_l3bank_steering_table[] = {
|
|
{ 0x00B100, 0x00B3FF },
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xelp_dss_steering_table[] = {
|
|
{ 0x008150, 0x00815F },
|
|
{ 0x009520, 0x00955F },
|
|
{ 0x00DE80, 0x00E8FF },
|
|
{ 0x024A00, 0x024A7F },
|
|
{},
|
|
};
|
|
|
|
/* DSS steering is used for GSLICE ranges as well */
|
|
static const struct xe_mmio_range xehp_dss_steering_table[] = {
|
|
{ 0x005200, 0x0052FF }, /* GSLICE */
|
|
{ 0x005400, 0x007FFF }, /* GSLICE */
|
|
{ 0x008140, 0x00815F }, /* GSLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
|
|
{ 0x008D00, 0x008DFF }, /* DSS */
|
|
{ 0x0094D0, 0x00955F }, /* GSLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
|
{ 0x009680, 0x0096FF }, /* DSS */
|
|
{ 0x00D800, 0x00D87F }, /* GSLICE */
|
|
{ 0x00DC00, 0x00DCFF }, /* GSLICE */
|
|
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved ) */
|
|
{ 0x017000, 0x017FFF }, /* GSLICE */
|
|
{ 0x024A00, 0x024A7F }, /* DSS */
|
|
{},
|
|
};
|
|
|
|
/* DSS steering is used for COMPUTE ranges as well */
|
|
static const struct xe_mmio_range xehpc_dss_steering_table[] = {
|
|
{ 0x008140, 0x00817F }, /* COMPUTE (0x8140-0x814F & 0x8160-0x817F), DSS (0x8150-0x815F) */
|
|
{ 0x0094D0, 0x00955F }, /* COMPUTE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
|
{ 0x009680, 0x0096FF }, /* DSS */
|
|
{ 0x00DC00, 0x00DCFF }, /* COMPUTE */
|
|
{ 0x00DE80, 0x00E7FF }, /* DSS (0xDF00-0xE1FF reserved ) */
|
|
{},
|
|
};
|
|
|
|
/* DSS steering is used for SLICE ranges as well */
|
|
static const struct xe_mmio_range xelpg_dss_steering_table[] = {
|
|
{ 0x005200, 0x0052FF }, /* SLICE */
|
|
{ 0x005500, 0x007FFF }, /* SLICE */
|
|
{ 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
|
|
{ 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
|
{ 0x009680, 0x0096FF }, /* DSS */
|
|
{ 0x00D800, 0x00D87F }, /* SLICE */
|
|
{ 0x00DC00, 0x00DCFF }, /* SLICE */
|
|
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xelpmp_oaddrm_steering_table[] = {
|
|
{ 0x393200, 0x39323F },
|
|
{ 0x393400, 0x3934FF },
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range dg2_implicit_steering_table[] = {
|
|
{ 0x000B00, 0x000BFF }, /* SF (SQIDI replication) */
|
|
{ 0x001000, 0x001FFF }, /* SF (SQIDI replication) */
|
|
{ 0x004000, 0x004AFF }, /* GAM (MSLICE replication) */
|
|
{ 0x008700, 0x0087FF }, /* MCFG (SQIDI replication) */
|
|
{ 0x00C800, 0x00CFFF }, /* GAM (MSLICE replication) */
|
|
{ 0x00F000, 0x00FFFF }, /* GAM (MSLICE replication) */
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xe2lpg_dss_steering_table[] = {
|
|
{ 0x005200, 0x0052FF }, /* SLICE */
|
|
{ 0x005500, 0x007FFF }, /* SLICE */
|
|
{ 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
|
|
{ 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
|
|
{ 0x009680, 0x0096FF }, /* DSS */
|
|
{ 0x00D800, 0x00D87F }, /* SLICE */
|
|
{ 0x00DC00, 0x00DCFF }, /* SLICE */
|
|
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
|
|
{ 0x00E980, 0x00E9FF }, /* SLICE */
|
|
{ 0x013000, 0x0133FF }, /* DSS (0x13000-0x131FF), SLICE (0x13200-0x133FF) */
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xe2lpg_sqidi_psmi_steering_table[] = {
|
|
{ 0x000B00, 0x000BFF },
|
|
{ 0x001000, 0x001FFF },
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xe2lpg_instance0_steering_table[] = {
|
|
{ 0x004000, 0x004AFF }, /* GAM, rsvd, GAMWKR */
|
|
{ 0x008700, 0x00887F }, /* SQIDI, MEMPIPE */
|
|
{ 0x00B000, 0x00B3FF }, /* NODE, L3BANK */
|
|
{ 0x00C800, 0x00CFFF }, /* GAM */
|
|
{ 0x00D880, 0x00D8FF }, /* NODE */
|
|
{ 0x00DD00, 0x00DDFF }, /* MEMPIPE */
|
|
{ 0x00E900, 0x00E97F }, /* MEMPIPE */
|
|
{ 0x00F000, 0x00FFFF }, /* GAM, GAMWKR */
|
|
{ 0x013400, 0x0135FF }, /* MEMPIPE */
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xe2lpm_gpmxmt_steering_table[] = {
|
|
{ 0x388160, 0x38817F },
|
|
{ 0x389480, 0x3894CF },
|
|
{},
|
|
};
|
|
|
|
static const struct xe_mmio_range xe2lpm_instance0_steering_table[] = {
|
|
{ 0x384000, 0x3847DF }, /* GAM, rsvd, GAM */
|
|
{ 0x384900, 0x384AFF }, /* GAM */
|
|
{ 0x389560, 0x3895FF }, /* MEDIAINF */
|
|
{ 0x38B600, 0x38B8FF }, /* L3BANK */
|
|
{ 0x38C800, 0x38D07F }, /* GAM, MEDIAINF */
|
|
{ 0x38F000, 0x38F0FF }, /* GAM */
|
|
{ 0x393C00, 0x393C7F }, /* MEDIAINF */
|
|
{},
|
|
};
|
|
|
|
static void init_steering_l3bank(struct xe_gt *gt)
|
|
{
|
|
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
|
|
u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
|
|
xe_mmio_read32(gt, MIRROR_FUSE3));
|
|
u32 bank_mask = REG_FIELD_GET(GT_L3_EXC_MASK,
|
|
xe_mmio_read32(gt, XEHP_FUSE4));
|
|
|
|
/*
|
|
* Group selects mslice, instance selects bank within mslice.
|
|
* Bank 0 is always valid _except_ when the bank mask is 010b.
|
|
*/
|
|
gt->steering[L3BANK].group_target = __ffs(mslice_mask);
|
|
gt->steering[L3BANK].instance_target =
|
|
bank_mask & BIT(0) ? 0 : 2;
|
|
} else if (gt_to_xe(gt)->info.platform == XE_DG2) {
|
|
u32 mslice_mask = REG_FIELD_GET(MEML3_EN_MASK,
|
|
xe_mmio_read32(gt, MIRROR_FUSE3));
|
|
u32 bank = __ffs(mslice_mask) * 8;
|
|
|
|
/*
|
|
* Like mslice registers, look for a valid mslice and steer to
|
|
* the first L3BANK of that quad. Access to the Nth L3 bank is
|
|
* split between the first bits of group and instance
|
|
*/
|
|
gt->steering[L3BANK].group_target = (bank >> 2) & 0x7;
|
|
gt->steering[L3BANK].instance_target = bank & 0x3;
|
|
} else {
|
|
u32 fuse = REG_FIELD_GET(L3BANK_MASK,
|
|
~xe_mmio_read32(gt, MIRROR_FUSE3));
|
|
|
|
gt->steering[L3BANK].group_target = 0; /* unused */
|
|
gt->steering[L3BANK].instance_target = __ffs(fuse);
|
|
}
|
|
}
|
|
|
|
static void init_steering_mslice(struct xe_gt *gt)
|
|
{
|
|
u32 mask = REG_FIELD_GET(MEML3_EN_MASK,
|
|
xe_mmio_read32(gt, MIRROR_FUSE3));
|
|
|
|
/*
|
|
* mslice registers are valid (not terminated) if either the meml3
|
|
* associated with the mslice is present, or at least one DSS associated
|
|
* with the mslice is present. There will always be at least one meml3
|
|
* so we can just use that to find a non-terminated mslice and ignore
|
|
* the DSS fusing.
|
|
*/
|
|
gt->steering[MSLICE].group_target = __ffs(mask);
|
|
gt->steering[MSLICE].instance_target = 0; /* unused */
|
|
|
|
/*
|
|
* LNCF termination is also based on mslice presence, so we'll set
|
|
* it up here. Either LNCF within a non-terminated mslice will work,
|
|
* so we just always pick LNCF 0 here.
|
|
*/
|
|
gt->steering[LNCF].group_target = __ffs(mask) << 1;
|
|
gt->steering[LNCF].instance_target = 0; /* unused */
|
|
}
|
|
|
|
static unsigned int dss_per_group(struct xe_gt *gt)
|
|
{
|
|
struct xe_guc *guc = >->uc.guc;
|
|
u32 max_slices = 0, max_subslices = 0;
|
|
int ret;
|
|
|
|
/*
|
|
* Try to query the GuC's hwconfig table for the maximum number of
|
|
* slices and subslices. These don't reflect the platform's actual
|
|
* slice/DSS counts, just the physical layout by which we should
|
|
* determine the steering targets. On older platforms with older GuC
|
|
* firmware releases it's possible that these attributes may not be
|
|
* included in the table, so we can always fall back to the old
|
|
* hardcoded layouts.
|
|
*/
|
|
#define HWCONFIG_ATTR_MAX_SLICES 1
|
|
#define HWCONFIG_ATTR_MAX_SUBSLICES 70
|
|
|
|
ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SLICES,
|
|
&max_slices);
|
|
if (ret < 0 || max_slices == 0)
|
|
goto fallback;
|
|
|
|
ret = xe_guc_hwconfig_lookup_u32(guc, HWCONFIG_ATTR_MAX_SUBSLICES,
|
|
&max_subslices);
|
|
if (ret < 0 || max_subslices == 0)
|
|
goto fallback;
|
|
|
|
return DIV_ROUND_UP(max_subslices, max_slices);
|
|
|
|
fallback:
|
|
xe_gt_dbg(gt, "GuC hwconfig cannot provide dss/slice; using typical fallback values\n");
|
|
if (gt_to_xe(gt)->info.platform == XE_PVC)
|
|
return 8;
|
|
else if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1250)
|
|
return 4;
|
|
else
|
|
return 6;
|
|
}
|
|
|
|
/**
|
|
* xe_gt_mcr_get_dss_steering - Get the group/instance steering for a DSS
|
|
* @gt: GT structure
|
|
* @dss: DSS ID to obtain steering for
|
|
* @group: pointer to storage for steering group ID
|
|
* @instance: pointer to storage for steering instance ID
|
|
*/
|
|
void xe_gt_mcr_get_dss_steering(struct xe_gt *gt, unsigned int dss, u16 *group, u16 *instance)
|
|
{
|
|
xe_gt_assert(gt, dss < XE_MAX_DSS_FUSE_BITS);
|
|
|
|
*group = dss / gt->steering_dss_per_grp;
|
|
*instance = dss % gt->steering_dss_per_grp;
|
|
}
|
|
|
|
static void init_steering_dss(struct xe_gt *gt)
|
|
{
|
|
gt->steering_dss_per_grp = dss_per_group(gt);
|
|
|
|
xe_gt_mcr_get_dss_steering(gt,
|
|
min(xe_dss_mask_group_ffs(gt->fuse_topo.g_dss_mask, 0, 0),
|
|
xe_dss_mask_group_ffs(gt->fuse_topo.c_dss_mask, 0, 0)),
|
|
>->steering[DSS].group_target,
|
|
>->steering[DSS].instance_target);
|
|
}
|
|
|
|
static void init_steering_oaddrm(struct xe_gt *gt)
|
|
{
|
|
/*
|
|
* First instance is only terminated if the entire first media slice
|
|
* is absent (i.e., no VCS0 or VECS0).
|
|
*/
|
|
if (gt->info.engine_mask & (XE_HW_ENGINE_VCS0 | XE_HW_ENGINE_VECS0))
|
|
gt->steering[OADDRM].group_target = 0;
|
|
else
|
|
gt->steering[OADDRM].group_target = 1;
|
|
|
|
gt->steering[OADDRM].instance_target = 0; /* unused */
|
|
}
|
|
|
|
static void init_steering_sqidi_psmi(struct xe_gt *gt)
|
|
{
|
|
u32 mask = REG_FIELD_GET(XE2_NODE_ENABLE_MASK,
|
|
xe_mmio_read32(gt, MIRROR_FUSE3));
|
|
u32 select = __ffs(mask);
|
|
|
|
gt->steering[SQIDI_PSMI].group_target = select >> 1;
|
|
gt->steering[SQIDI_PSMI].instance_target = select & 0x1;
|
|
}
|
|
|
|
static void init_steering_inst0(struct xe_gt *gt)
|
|
{
|
|
gt->steering[INSTANCE0].group_target = 0; /* unused */
|
|
gt->steering[INSTANCE0].instance_target = 0; /* unused */
|
|
}
|
|
|
|
static const struct {
|
|
const char *name;
|
|
void (*init)(struct xe_gt *gt);
|
|
} xe_steering_types[] = {
|
|
[L3BANK] = { "L3BANK", init_steering_l3bank },
|
|
[MSLICE] = { "MSLICE", init_steering_mslice },
|
|
[LNCF] = { "LNCF", NULL }, /* initialized by mslice init */
|
|
[DSS] = { "DSS", init_steering_dss },
|
|
[OADDRM] = { "OADDRM / GPMXMT", init_steering_oaddrm },
|
|
[SQIDI_PSMI] = { "SQIDI_PSMI", init_steering_sqidi_psmi },
|
|
[INSTANCE0] = { "INSTANCE 0", init_steering_inst0 },
|
|
[IMPLICIT_STEERING] = { "IMPLICIT", NULL },
|
|
};
|
|
|
|
/**
|
|
* xe_gt_mcr_init_early - Early initialization of the MCR support
|
|
* @gt: GT structure
|
|
*
|
|
* Perform early software only initialization of the MCR lock to allow
|
|
* the synchronization on accessing the STEER_SEMAPHORE register and
|
|
* use the xe_gt_mcr_multicast_write() function.
|
|
*/
|
|
void xe_gt_mcr_init_early(struct xe_gt *gt)
|
|
{
|
|
BUILD_BUG_ON(IMPLICIT_STEERING + 1 != NUM_STEERING_TYPES);
|
|
BUILD_BUG_ON(ARRAY_SIZE(xe_steering_types) != NUM_STEERING_TYPES);
|
|
|
|
spin_lock_init(>->mcr_lock);
|
|
}
|
|
|
|
/**
|
|
* xe_gt_mcr_init - Normal initialization of the MCR support
|
|
* @gt: GT structure
|
|
*
|
|
* Perform normal initialization of the MCR for all usages.
|
|
*/
|
|
void xe_gt_mcr_init(struct xe_gt *gt)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
|
|
if (IS_SRIOV_VF(xe))
|
|
return;
|
|
|
|
if (gt->info.type == XE_GT_TYPE_MEDIA) {
|
|
drm_WARN_ON(&xe->drm, MEDIA_VER(xe) < 13);
|
|
|
|
if (MEDIA_VER(xe) >= 20) {
|
|
gt->steering[OADDRM].ranges = xe2lpm_gpmxmt_steering_table;
|
|
gt->steering[INSTANCE0].ranges = xe2lpm_instance0_steering_table;
|
|
} else {
|
|
gt->steering[OADDRM].ranges = xelpmp_oaddrm_steering_table;
|
|
}
|
|
} else {
|
|
if (GRAPHICS_VER(xe) >= 20) {
|
|
gt->steering[DSS].ranges = xe2lpg_dss_steering_table;
|
|
gt->steering[SQIDI_PSMI].ranges = xe2lpg_sqidi_psmi_steering_table;
|
|
gt->steering[INSTANCE0].ranges = xe2lpg_instance0_steering_table;
|
|
} else if (GRAPHICS_VERx100(xe) >= 1270) {
|
|
gt->steering[INSTANCE0].ranges = xelpg_instance0_steering_table;
|
|
gt->steering[L3BANK].ranges = xelpg_l3bank_steering_table;
|
|
gt->steering[DSS].ranges = xelpg_dss_steering_table;
|
|
} else if (xe->info.platform == XE_PVC) {
|
|
gt->steering[INSTANCE0].ranges = xehpc_instance0_steering_table;
|
|
gt->steering[DSS].ranges = xehpc_dss_steering_table;
|
|
} else if (xe->info.platform == XE_DG2) {
|
|
gt->steering[L3BANK].ranges = xehp_l3bank_steering_table;
|
|
gt->steering[MSLICE].ranges = xehp_mslice_steering_table;
|
|
gt->steering[LNCF].ranges = xehp_lncf_steering_table;
|
|
gt->steering[DSS].ranges = xehp_dss_steering_table;
|
|
gt->steering[IMPLICIT_STEERING].ranges = dg2_implicit_steering_table;
|
|
} else {
|
|
gt->steering[L3BANK].ranges = xelp_l3bank_steering_table;
|
|
gt->steering[DSS].ranges = xelp_dss_steering_table;
|
|
}
|
|
}
|
|
|
|
/* Select non-terminated steering target for each type */
|
|
for (int i = 0; i < NUM_STEERING_TYPES; i++)
|
|
if (gt->steering[i].ranges && xe_steering_types[i].init)
|
|
xe_steering_types[i].init(gt);
|
|
}
|
|
|
|
/**
|
|
* xe_gt_mcr_set_implicit_defaults - Initialize steer control registers
|
|
* @gt: GT structure
|
|
*
|
|
* Some register ranges don't need to have their steering control registers
|
|
* changed on each access - it's sufficient to set them once on initialization.
|
|
* This function sets those registers for each platform *
|
|
*/
|
|
void xe_gt_mcr_set_implicit_defaults(struct xe_gt *gt)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
|
|
if (IS_SRIOV_VF(xe))
|
|
return;
|
|
|
|
if (xe->info.platform == XE_DG2) {
|
|
u32 steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, 0) |
|
|
REG_FIELD_PREP(MCR_SUBSLICE_MASK, 2);
|
|
|
|
xe_mmio_write32(gt, MCFG_MCR_SELECTOR, steer_val);
|
|
xe_mmio_write32(gt, SF_MCR_SELECTOR, steer_val);
|
|
/*
|
|
* For GAM registers, all reads should be directed to instance 1
|
|
* (unicast reads against other instances are not allowed),
|
|
* and instance 1 is already the hardware's default steering
|
|
* target, which we never change
|
|
*/
|
|
}
|
|
}
|
|
|
|
/*
|
|
* xe_gt_mcr_get_nonterminated_steering - find group/instance values that
|
|
* will steer a register to a non-terminated instance
|
|
* @gt: GT structure
|
|
* @reg: register for which the steering is required
|
|
* @group: return variable for group steering
|
|
* @instance: return variable for instance steering
|
|
*
|
|
* This function returns a group/instance pair that is guaranteed to work for
|
|
* read steering of the given register. Note that a value will be returned even
|
|
* if the register is not replicated and therefore does not actually require
|
|
* steering.
|
|
*
|
|
* Returns true if the caller should steer to the @group/@instance values
|
|
* returned. Returns false if the caller need not perform any steering
|
|
*/
|
|
static bool xe_gt_mcr_get_nonterminated_steering(struct xe_gt *gt,
|
|
struct xe_reg_mcr reg_mcr,
|
|
u8 *group, u8 *instance)
|
|
{
|
|
const struct xe_reg reg = to_xe_reg(reg_mcr);
|
|
const struct xe_mmio_range *implicit_ranges;
|
|
|
|
for (int type = 0; type < IMPLICIT_STEERING; type++) {
|
|
if (!gt->steering[type].ranges)
|
|
continue;
|
|
|
|
for (int i = 0; gt->steering[type].ranges[i].end > 0; i++) {
|
|
if (xe_mmio_in_range(gt, >->steering[type].ranges[i], reg)) {
|
|
*group = gt->steering[type].group_target;
|
|
*instance = gt->steering[type].instance_target;
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
implicit_ranges = gt->steering[IMPLICIT_STEERING].ranges;
|
|
if (implicit_ranges)
|
|
for (int i = 0; implicit_ranges[i].end > 0; i++)
|
|
if (xe_mmio_in_range(gt, &implicit_ranges[i], reg))
|
|
return false;
|
|
|
|
/*
|
|
* Not found in a steering table and not a register with implicit
|
|
* steering. Just steer to 0/0 as a guess and raise a warning.
|
|
*/
|
|
drm_WARN(>_to_xe(gt)->drm, true,
|
|
"Did not find MCR register %#x in any MCR steering table\n",
|
|
reg.addr);
|
|
*group = 0;
|
|
*instance = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Obtain exclusive access to MCR steering. On MTL and beyond we also need
|
|
* to synchronize with external clients (e.g., firmware), so a semaphore
|
|
* register will also need to be taken.
|
|
*/
|
|
static void mcr_lock(struct xe_gt *gt) __acquires(>->mcr_lock)
|
|
{
|
|
struct xe_device *xe = gt_to_xe(gt);
|
|
int ret = 0;
|
|
|
|
spin_lock(>->mcr_lock);
|
|
|
|
/*
|
|
* Starting with MTL we also need to grab a semaphore register
|
|
* to synchronize with external agents (e.g., firmware) that now
|
|
* shares the same steering control register. The semaphore is obtained
|
|
* when a read to the relevant register returns 1.
|
|
*/
|
|
if (GRAPHICS_VERx100(xe) >= 1270)
|
|
ret = xe_mmio_wait32(gt, STEER_SEMAPHORE, 0x1, 0x1, 10, NULL,
|
|
true);
|
|
|
|
drm_WARN_ON_ONCE(&xe->drm, ret == -ETIMEDOUT);
|
|
}
|
|
|
|
static void mcr_unlock(struct xe_gt *gt) __releases(>->mcr_lock)
|
|
{
|
|
/* Release hardware semaphore - this is done by writing 1 to the register */
|
|
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270)
|
|
xe_mmio_write32(gt, STEER_SEMAPHORE, 0x1);
|
|
|
|
spin_unlock(>->mcr_lock);
|
|
}
|
|
|
|
/*
|
|
* Access a register with specific MCR steering
|
|
*
|
|
* Caller needs to make sure the relevant forcewake wells are up.
|
|
*/
|
|
static u32 rw_with_mcr_steering(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
|
|
u8 rw_flag, int group, int instance, u32 value)
|
|
{
|
|
const struct xe_reg reg = to_xe_reg(reg_mcr);
|
|
struct xe_reg steer_reg;
|
|
u32 steer_val, val = 0;
|
|
|
|
lockdep_assert_held(>->mcr_lock);
|
|
|
|
if (GRAPHICS_VERx100(gt_to_xe(gt)) >= 1270) {
|
|
steer_reg = MTL_MCR_SELECTOR;
|
|
steer_val = REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
|
|
REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance);
|
|
} else {
|
|
steer_reg = MCR_SELECTOR;
|
|
steer_val = REG_FIELD_PREP(MCR_SLICE_MASK, group) |
|
|
REG_FIELD_PREP(MCR_SUBSLICE_MASK, instance);
|
|
}
|
|
|
|
/*
|
|
* Always leave the hardware in multicast mode when doing reads and only
|
|
* change it to unicast mode when doing writes of a specific instance.
|
|
*
|
|
* The setting of the multicast/unicast bit usually wouldn't matter for
|
|
* read operations (which always return the value from a single register
|
|
* instance regardless of how that bit is set), but some platforms may
|
|
* have workarounds requiring us to remain in multicast mode for reads,
|
|
* e.g. Wa_22013088509 on PVC. There's no real downside to this, so
|
|
* we'll just go ahead and do so on all platforms; we'll only clear the
|
|
* multicast bit from the mask when explicitly doing a write operation.
|
|
*
|
|
* No need to save old steering reg value.
|
|
*/
|
|
if (rw_flag == MCR_OP_READ)
|
|
steer_val |= MCR_MULTICAST;
|
|
|
|
xe_mmio_write32(gt, steer_reg, steer_val);
|
|
|
|
if (rw_flag == MCR_OP_READ)
|
|
val = xe_mmio_read32(gt, reg);
|
|
else
|
|
xe_mmio_write32(gt, reg, value);
|
|
|
|
/*
|
|
* If we turned off the multicast bit (during a write) we're required
|
|
* to turn it back on before finishing. The group and instance values
|
|
* don't matter since they'll be re-programmed on the next MCR
|
|
* operation.
|
|
*/
|
|
if (rw_flag == MCR_OP_WRITE)
|
|
xe_mmio_write32(gt, steer_reg, MCR_MULTICAST);
|
|
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* xe_gt_mcr_unicast_read_any - reads a non-terminated instance of an MCR register
|
|
* @gt: GT structure
|
|
* @reg_mcr: register to read
|
|
*
|
|
* Reads a GT MCR register. The read will be steered to a non-terminated
|
|
* instance (i.e., one that isn't fused off or powered down by power gating).
|
|
* This function assumes the caller is already holding any necessary forcewake
|
|
* domains.
|
|
*
|
|
* Returns the value from a non-terminated instance of @reg.
|
|
*/
|
|
u32 xe_gt_mcr_unicast_read_any(struct xe_gt *gt, struct xe_reg_mcr reg_mcr)
|
|
{
|
|
const struct xe_reg reg = to_xe_reg(reg_mcr);
|
|
u8 group, instance;
|
|
u32 val;
|
|
bool steer;
|
|
|
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
|
|
|
steer = xe_gt_mcr_get_nonterminated_steering(gt, reg_mcr,
|
|
&group, &instance);
|
|
|
|
if (steer) {
|
|
mcr_lock(gt);
|
|
val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ,
|
|
group, instance, 0);
|
|
mcr_unlock(gt);
|
|
} else {
|
|
val = xe_mmio_read32(gt, reg);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* xe_gt_mcr_unicast_read - read a specific instance of an MCR register
|
|
* @gt: GT structure
|
|
* @reg_mcr: the MCR register to read
|
|
* @group: the MCR group
|
|
* @instance: the MCR instance
|
|
*
|
|
* Returns the value read from an MCR register after steering toward a specific
|
|
* group/instance.
|
|
*/
|
|
u32 xe_gt_mcr_unicast_read(struct xe_gt *gt,
|
|
struct xe_reg_mcr reg_mcr,
|
|
int group, int instance)
|
|
{
|
|
u32 val;
|
|
|
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
|
|
|
mcr_lock(gt);
|
|
val = rw_with_mcr_steering(gt, reg_mcr, MCR_OP_READ, group, instance, 0);
|
|
mcr_unlock(gt);
|
|
|
|
return val;
|
|
}
|
|
|
|
/**
|
|
* xe_gt_mcr_unicast_write - write a specific instance of an MCR register
|
|
* @gt: GT structure
|
|
* @reg_mcr: the MCR register to write
|
|
* @value: value to write
|
|
* @group: the MCR group
|
|
* @instance: the MCR instance
|
|
*
|
|
* Write an MCR register in unicast mode after steering toward a specific
|
|
* group/instance.
|
|
*/
|
|
void xe_gt_mcr_unicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
|
|
u32 value, int group, int instance)
|
|
{
|
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
|
|
|
mcr_lock(gt);
|
|
rw_with_mcr_steering(gt, reg_mcr, MCR_OP_WRITE, group, instance, value);
|
|
mcr_unlock(gt);
|
|
}
|
|
|
|
/**
|
|
* xe_gt_mcr_multicast_write - write a value to all instances of an MCR register
|
|
* @gt: GT structure
|
|
* @reg_mcr: the MCR register to write
|
|
* @value: value to write
|
|
*
|
|
* Write an MCR register in multicast mode to update all instances.
|
|
*/
|
|
void xe_gt_mcr_multicast_write(struct xe_gt *gt, struct xe_reg_mcr reg_mcr,
|
|
u32 value)
|
|
{
|
|
struct xe_reg reg = to_xe_reg(reg_mcr);
|
|
|
|
xe_gt_assert(gt, !IS_SRIOV_VF(gt_to_xe(gt)));
|
|
|
|
/*
|
|
* Synchronize with any unicast operations. Once we have exclusive
|
|
* access, the MULTICAST bit should already be set, so there's no need
|
|
* to touch the steering register.
|
|
*/
|
|
mcr_lock(gt);
|
|
xe_mmio_write32(gt, reg, value);
|
|
mcr_unlock(gt);
|
|
}
|
|
|
|
void xe_gt_mcr_steering_dump(struct xe_gt *gt, struct drm_printer *p)
|
|
{
|
|
for (int i = 0; i < NUM_STEERING_TYPES; i++) {
|
|
if (gt->steering[i].ranges) {
|
|
drm_printf(p, "%s steering: group=%#x, instance=%#x\n",
|
|
xe_steering_types[i].name,
|
|
gt->steering[i].group_target,
|
|
gt->steering[i].instance_target);
|
|
for (int j = 0; gt->steering[i].ranges[j].end; j++)
|
|
drm_printf(p, "\t0x%06x - 0x%06x\n",
|
|
gt->steering[i].ranges[j].start,
|
|
gt->steering[i].ranges[j].end);
|
|
}
|
|
}
|
|
}
|