mirror of
https://github.com/raspberrypi/linux.git
synced 2025-12-07 18:40:10 +00:00
Pull inode timestamps conversion to timespec64 from Arnd Bergmann:
"This is a late set of changes from Deepa Dinamani doing an automated
treewide conversion of the inode and iattr structures from 'timespec'
to 'timespec64', to push the conversion from the VFS layer into the
individual file systems.
As Deepa writes:
'The series aims to switch vfs timestamps to use struct timespec64.
Currently vfs uses struct timespec, which is not y2038 safe.
The series involves the following:
1. Add vfs helper functions for supporting struct timepec64
timestamps.
2. Cast prints of vfs timestamps to avoid warnings after the switch.
3. Simplify code using vfs timestamps so that the actual replacement
becomes easy.
4. Convert vfs timestamps to use struct timespec64 using a script.
This is a flag day patch.
Next steps:
1. Convert APIs that can handle timespec64, instead of converting
timestamps at the boundaries.
2. Update internal data structures to avoid timestamp conversions'
Thomas Gleixner adds:
'I think there is no point to drag that out for the next merge
window. The whole thing needs to be done in one go for the core
changes which means that you're going to play that catchup game
forever. Let's get over with it towards the end of the merge window'"
* tag 'vfs-timespec64' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd/playground:
pstore: Remove bogus format string definition
vfs: change inode times to use struct timespec64
pstore: Convert internal records to timespec64
udf: Simplify calls to udf_disk_stamp_to_time
fs: nfs: get rid of memcpys for inode times
ceph: make inode time prints to be long long
lustre: Use long long type to print inode time
fs: add timespec64_truncate()
To understand all the Linux-USB framework, you'll use these resources:
* This source code. This is necessarily an evolving work, and
includes kerneldoc that should help you get a current overview.
("make pdfdocs", and then look at "usb.pdf" for host side and
"gadget.pdf" for peripheral side.) Also, Documentation/usb has
more information.
* The USB 2.0 specification (from www.usb.org), with supplements
such as those for USB OTG and the various device classes.
The USB specification has a good overview chapter, and USB
peripherals conform to the widely known "Chapter 9".
* Chip specifications for USB controllers. Examples include
host controllers (on PCs, servers, and more); peripheral
controllers (in devices with Linux firmware, like printers or
cell phones); and hard-wired peripherals like Ethernet adapters.
* Specifications for other protocols implemented by USB peripheral
functions. Some are vendor-specific; others are vendor-neutral
but just standardized outside of the www.usb.org team.
Here is a list of what each subdirectory here is, and what is contained in
them.
core/ - This is for the core USB host code, including the
usbfs files and the hub class driver ("hub_wq").
host/ - This is for USB host controller drivers. This
includes UHCI, OHCI, EHCI, and others that might
be used with more specialized "embedded" systems.
gadget/ - This is for USB peripheral controller drivers and
the various gadget drivers which talk to them.
Individual USB driver directories. A new driver should be added to the
first subdirectory in the list below that it fits into.
image/ - This is for still image drivers, like scanners or
digital cameras.
../input/ - This is for any driver that uses the input subsystem,
like keyboard, mice, touchscreens, tablets, etc.
../media/ - This is for multimedia drivers, like video cameras,
radios, and any other drivers that talk to the v4l
subsystem.
../net/ - This is for network drivers.
serial/ - This is for USB to serial drivers.
storage/ - This is for USB mass-storage drivers.
class/ - This is for all USB device drivers that do not fit
into any of the above categories, and work for a range
of USB Class specified devices.
misc/ - This is for all USB device drivers that do not fit
into any of the above categories.