Files
linux/tools/testing/selftests/arm64/fp
Eric Biggers 8522104f75 crypto: crct10dif - remove from crypto API
Remove the "crct10dif" shash algorithm from the crypto API.  It has no
known user now that the lib is no longer built on top of it.  It has no
remaining references in kernel code.  The only other potential users
would be the usual components that allow specifying arbitrary hash
algorithms by name, namely AF_ALG and dm-integrity.   However there are
no indications that "crct10dif" is being used with these components.
Debian Code Search and web searches don't find anything relevant, and
explicitly grepping the source code of the usual suspects (cryptsetup,
libell, iwd) finds no matches either.  "crc32" and "crc32c" are used in
a few more places, but that doesn't seem to be the case for "crct10dif".

crc_t10dif_update() is also tested by crc_kunit now, so the test
coverage provided via the crypto self-tests is no longer needed.

Also note that the "crct10dif" shash algorithm was inconsistent with the
rest of the shash API in that it wrote the digest in CPU endianness,
making the resulting byte array differ on little endian vs. big endian
platforms.  This means it was effectively just built for use by the lib
functions, and it was not actually correct to treat it as "just another
hash function" that could be dropped in via the shash API.

Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: "Martin K. Petersen" <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20250206173857.39794-1-ebiggers@kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
2025-02-08 20:06:30 -08:00
..

This directory contains a mix of tests integrated with kselftest and
standalone stress tests.

kselftest tests
===============

sve-probe-vls - Checks the SVE vector length enumeration interface
sve-ptrace - Checks the SVE ptrace interface

Running the non-kselftest tests
===============================

sve-stress performs an SVE context switch stress test, as described
below.

(The fpsimd-stress test works the same way; just substitute "fpsimd" for
"sve" in the following commands.)


The test runs until killed by the user.

If no context switch error was detected, you will see output such as
the following:

$ ./sve-stress
(wait for some time)
^C
Vector length:        512 bits
PID:    1573
Terminated by signal 15, no error, iterations=9467, signals=1014
Vector length:  512 bits
PID:    1575
Terminated by signal 15, no error, iterations=9448, signals=1028
Vector length:  512 bits
PID:    1577
Terminated by signal 15, no error, iterations=9436, signals=1039
Vector length:  512 bits
PID:    1579
Terminated by signal 15, no error, iterations=9421, signals=1039
Vector length:  512 bits
PID:    1581
Terminated by signal 15, no error, iterations=9403, signals=1039
Vector length:  512 bits
PID:    1583
Terminated by signal 15, no error, iterations=9385, signals=1036
Vector length:  512 bits
PID:    1585
Terminated by signal 15, no error, iterations=9376, signals=1039
Vector length:  512 bits
PID:    1587
Terminated by signal 15, no error, iterations=9361, signals=1039
Vector length:  512 bits
PID:    1589
Terminated by signal 15, no error, iterations=9350, signals=1039


If an error was detected, details of the mismatch will be printed
instead of "no error".

Ideally, the test should be allowed to run for many minutes or hours
to maximise test coverage.


KVM stress testing
==================

To try to reproduce the bugs that we have been observing, sve-stress
should be run in parallel in two KVM guests, while simultaneously
running on the host.

1) Start 2 guests, using the following command for each:

$ lkvm run --console=virtio -pconsole=hvc0 --sve Image

(Depending on the hardware GIC implementation, you may also need
--irqchip=gicv3.  New kvmtool defaults to that if appropriate, but I
can't remember whether my branch is new enough for that.  Try without
the option first.)

Kvmtool occupies the terminal until you kill it (Ctrl+A x),
or until the guest terminates.  It is therefore recommended to run
each instance in separate terminal (use screen or ssh etc.)  This
allows multiple guests to be run in parallel while running other
commands on the host.

Within the guest, the host filesystem is accessible, mounted on /host.

2) Run the sve-stress on *each* guest with the Vector-Length set to 32:
guest$ ./vlset --inherit 32 ./sve-stress

3) Run the sve-stress on the host with the maximum Vector-Length:
host$ ./vlset --inherit --max ./sve-stress


Again, the test should be allowed to run for many minutes or hours to
maximise test coverage.

If no error is detected, you will see output from each sve-stress
instance similar to that illustrated above; otherwise details of the
observed mismatches will be printed.