Files
linux/drivers/mtd/nand/spi/micron.c
Miquel Raynal ac3a4b17e0 mtd: spinand: Use more specific naming for the (quad) program load op
SPI operations have been initially described through macros implicitly
implying the use of a single SPI SDR bus. Macros for supporting dual and
quad I/O transfers have been added on top, generally inspired by vendor
naming, followed by DTR operations. Soon we might see octal
and even octal DTR operations as well (including the opcode byte).

Let's clarify what the macro really means by describing the expected bus
topology in the (quad) program load macro name.

While at modifying it, better add the missing_ OP suffix to align with
all the other macros of the same kind.

Acked-by: Tudor Ambarus <tudor.ambarus@linaro.org>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2025-04-29 11:05:34 +02:00

443 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2016-2017 Micron Technology, Inc.
*
* Authors:
* Peter Pan <peterpandong@micron.com>
*/
#include <linux/device.h>
#include <linux/kernel.h>
#include <linux/mtd/spinand.h>
#include <linux/spi/spi-mem.h>
#include <linux/string.h>
#define SPINAND_MFR_MICRON 0x2c
#define MICRON_STATUS_ECC_MASK GENMASK(6, 4)
#define MICRON_STATUS_ECC_NO_BITFLIPS (0 << 4)
#define MICRON_STATUS_ECC_1TO3_BITFLIPS (1 << 4)
#define MICRON_STATUS_ECC_4TO6_BITFLIPS (3 << 4)
#define MICRON_STATUS_ECC_7TO8_BITFLIPS (5 << 4)
#define MICRON_CFG_CR BIT(0)
/*
* As per datasheet, die selection is done by the 6th bit of Die
* Select Register (Address 0xD0).
*/
#define MICRON_DIE_SELECT_REG 0xD0
#define MICRON_SELECT_DIE(x) ((x) << 6)
#define MICRON_MT29F2G01ABAGD_CFG_OTP_STATE BIT(7)
#define MICRON_MT29F2G01ABAGD_CFG_OTP_LOCK \
(CFG_OTP_ENABLE | MICRON_MT29F2G01ABAGD_CFG_OTP_STATE)
static SPINAND_OP_VARIANTS(quadio_read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_1S_4S_4S_OP(0, 2, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_2S_2S_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0));
static SPINAND_OP_VARIANTS(x4_write_cache_variants,
SPINAND_PROG_LOAD_1S_1S_4S_OP(true, 0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_1S_OP(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(x4_update_cache_variants,
SPINAND_PROG_LOAD_1S_1S_4S_OP(false, 0, NULL, 0),
SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
/* Micron MT29F2G01AAAED Device */
static SPINAND_OP_VARIANTS(x4_read_cache_variants,
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_4S_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_2S_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_FAST_1S_1S_1S_OP(0, 1, NULL, 0),
SPINAND_PAGE_READ_FROM_CACHE_1S_1S_1S_OP(0, 1, NULL, 0));
static SPINAND_OP_VARIANTS(x1_write_cache_variants,
SPINAND_PROG_LOAD_1S_1S_1S_OP(true, 0, NULL, 0));
static SPINAND_OP_VARIANTS(x1_update_cache_variants,
SPINAND_PROG_LOAD_1S_1S_1S_OP(false, 0, NULL, 0));
static int micron_8_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
region->offset = mtd->oobsize / 2;
region->length = mtd->oobsize / 2;
return 0;
}
static int micron_8_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
if (section)
return -ERANGE;
/* Reserve 2 bytes for the BBM. */
region->offset = 2;
region->length = (mtd->oobsize / 2) - 2;
return 0;
}
static const struct mtd_ooblayout_ops micron_8_ooblayout = {
.ecc = micron_8_ooblayout_ecc,
.free = micron_8_ooblayout_free,
};
static int micron_4_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
if (section >= spinand->base.memorg.pagesize /
mtd->ecc_step_size)
return -ERANGE;
region->offset = (section * 16) + 8;
region->length = 8;
return 0;
}
static int micron_4_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *region)
{
struct spinand_device *spinand = mtd_to_spinand(mtd);
if (section >= spinand->base.memorg.pagesize /
mtd->ecc_step_size)
return -ERANGE;
if (section) {
region->offset = 16 * section;
region->length = 8;
} else {
/* section 0 has two bytes reserved for the BBM */
region->offset = 2;
region->length = 6;
}
return 0;
}
static const struct mtd_ooblayout_ops micron_4_ooblayout = {
.ecc = micron_4_ooblayout_ecc,
.free = micron_4_ooblayout_free,
};
static int micron_select_target(struct spinand_device *spinand,
unsigned int target)
{
struct spi_mem_op op = SPINAND_SET_FEATURE_1S_1S_1S_OP(MICRON_DIE_SELECT_REG,
spinand->scratchbuf);
if (target > 1)
return -EINVAL;
*spinand->scratchbuf = MICRON_SELECT_DIE(target);
return spi_mem_exec_op(spinand->spimem, &op);
}
static int micron_8_ecc_get_status(struct spinand_device *spinand,
u8 status)
{
switch (status & MICRON_STATUS_ECC_MASK) {
case STATUS_ECC_NO_BITFLIPS:
return 0;
case STATUS_ECC_UNCOR_ERROR:
return -EBADMSG;
case MICRON_STATUS_ECC_1TO3_BITFLIPS:
return 3;
case MICRON_STATUS_ECC_4TO6_BITFLIPS:
return 6;
case MICRON_STATUS_ECC_7TO8_BITFLIPS:
return 8;
default:
break;
}
return -EINVAL;
}
static int mt29f2g01abagd_otp_is_locked(struct spinand_device *spinand)
{
size_t bufsize = spinand_otp_page_size(spinand);
size_t retlen;
u8 *buf;
int ret;
buf = kmalloc(bufsize, GFP_KERNEL);
if (!buf)
return -ENOMEM;
ret = spinand_upd_cfg(spinand,
MICRON_MT29F2G01ABAGD_CFG_OTP_LOCK,
MICRON_MT29F2G01ABAGD_CFG_OTP_STATE);
if (ret)
goto free_buf;
ret = spinand_user_otp_read(spinand, 0, bufsize, &retlen, buf);
if (spinand_upd_cfg(spinand, MICRON_MT29F2G01ABAGD_CFG_OTP_LOCK,
0)) {
dev_warn(&spinand_to_mtd(spinand)->dev,
"Can not disable OTP mode\n");
ret = -EIO;
}
if (ret)
goto free_buf;
/* If all zeros, then the OTP area is locked. */
if (mem_is_zero(buf, bufsize))
ret = 1;
free_buf:
kfree(buf);
return ret;
}
static int mt29f2g01abagd_otp_info(struct spinand_device *spinand, size_t len,
struct otp_info *buf, size_t *retlen,
bool user)
{
int locked;
if (len < sizeof(*buf))
return -EINVAL;
locked = mt29f2g01abagd_otp_is_locked(spinand);
if (locked < 0)
return locked;
buf->locked = locked;
buf->start = 0;
buf->length = user ? spinand_user_otp_size(spinand) :
spinand_fact_otp_size(spinand);
*retlen = sizeof(*buf);
return 0;
}
static int mt29f2g01abagd_fact_otp_info(struct spinand_device *spinand,
size_t len, struct otp_info *buf,
size_t *retlen)
{
return mt29f2g01abagd_otp_info(spinand, len, buf, retlen, false);
}
static int mt29f2g01abagd_user_otp_info(struct spinand_device *spinand,
size_t len, struct otp_info *buf,
size_t *retlen)
{
return mt29f2g01abagd_otp_info(spinand, len, buf, retlen, true);
}
static int mt29f2g01abagd_otp_lock(struct spinand_device *spinand, loff_t from,
size_t len)
{
struct spi_mem_op write_op = SPINAND_WR_EN_DIS_1S_0_0_OP(true);
struct spi_mem_op exec_op = SPINAND_PROG_EXEC_1S_1S_0_OP(0);
u8 status;
int ret;
ret = spinand_upd_cfg(spinand,
MICRON_MT29F2G01ABAGD_CFG_OTP_LOCK,
MICRON_MT29F2G01ABAGD_CFG_OTP_LOCK);
if (!ret)
return ret;
ret = spi_mem_exec_op(spinand->spimem, &write_op);
if (!ret)
goto out;
ret = spi_mem_exec_op(spinand->spimem, &exec_op);
if (!ret)
goto out;
ret = spinand_wait(spinand,
SPINAND_WRITE_INITIAL_DELAY_US,
SPINAND_WRITE_POLL_DELAY_US,
&status);
if (!ret && (status & STATUS_PROG_FAILED))
ret = -EIO;
out:
if (spinand_upd_cfg(spinand, MICRON_MT29F2G01ABAGD_CFG_OTP_LOCK, 0)) {
dev_warn(&spinand_to_mtd(spinand)->dev,
"Can not disable OTP mode\n");
ret = -EIO;
}
return ret;
}
static const struct spinand_user_otp_ops mt29f2g01abagd_user_otp_ops = {
.info = mt29f2g01abagd_user_otp_info,
.lock = mt29f2g01abagd_otp_lock,
.read = spinand_user_otp_read,
.write = spinand_user_otp_write,
};
static const struct spinand_fact_otp_ops mt29f2g01abagd_fact_otp_ops = {
.info = mt29f2g01abagd_fact_otp_info,
.read = spinand_fact_otp_read,
};
static const struct spinand_info micron_spinand_table[] = {
/* M79A 2Gb 3.3V */
SPINAND_INFO("MT29F2G01ABAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x24),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_USER_OTP_INFO(12, 2, &mt29f2g01abagd_user_otp_ops),
SPINAND_FACT_OTP_INFO(2, 0, &mt29f2g01abagd_fact_otp_ops)),
/* M79A 2Gb 1.8V */
SPINAND_INFO("MT29F2G01ABBGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x25),
NAND_MEMORG(1, 2048, 128, 64, 2048, 40, 2, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 3.3V */
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x14),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M78A 1Gb 1.8V */
SPINAND_INFO("MT29F1G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x15),
NAND_MEMORG(1, 2048, 128, 64, 1024, 20, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M79A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ADAGD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x36),
NAND_MEMORG(1, 2048, 128, 64, 2048, 80, 2, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 4Gb 3.3V */
SPINAND_INFO("MT29F4G01ABAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x34),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 4Gb 1.8V */
SPINAND_INFO("MT29F4G01ABBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x35),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 1),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status)),
/* M70A 8Gb 3.3V */
SPINAND_INFO("MT29F8G01ADAFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x46),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M70A 8Gb 1.8V */
SPINAND_INFO("MT29F8G01ADBFD",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x47),
NAND_MEMORG(1, 4096, 256, 64, 2048, 40, 1, 1, 2),
NAND_ECCREQ(8, 512),
SPINAND_INFO_OP_VARIANTS(&quadio_read_cache_variants,
&x4_write_cache_variants,
&x4_update_cache_variants),
SPINAND_HAS_CR_FEAT_BIT,
SPINAND_ECCINFO(&micron_8_ooblayout,
micron_8_ecc_get_status),
SPINAND_SELECT_TARGET(micron_select_target)),
/* M69A 2Gb 3.3V */
SPINAND_INFO("MT29F2G01AAAED",
SPINAND_ID(SPINAND_READID_METHOD_OPCODE_DUMMY, 0x9F),
NAND_MEMORG(1, 2048, 64, 64, 2048, 80, 2, 1, 1),
NAND_ECCREQ(4, 512),
SPINAND_INFO_OP_VARIANTS(&x4_read_cache_variants,
&x1_write_cache_variants,
&x1_update_cache_variants),
0,
SPINAND_ECCINFO(&micron_4_ooblayout, NULL)),
};
static int micron_spinand_init(struct spinand_device *spinand)
{
/*
* M70A device series enable Continuous Read feature at Power-up,
* which is not supported. Disable this bit to avoid any possible
* failure.
*/
if (spinand->flags & SPINAND_HAS_CR_FEAT_BIT)
return spinand_upd_cfg(spinand, MICRON_CFG_CR, 0);
return 0;
}
static const struct spinand_manufacturer_ops micron_spinand_manuf_ops = {
.init = micron_spinand_init,
};
const struct spinand_manufacturer micron_spinand_manufacturer = {
.id = SPINAND_MFR_MICRON,
.name = "Micron",
.chips = micron_spinand_table,
.nchips = ARRAY_SIZE(micron_spinand_table),
.ops = &micron_spinand_manuf_ops,
};