Files
linux/drivers/gpu/drm/xe/xe_exec_queue.c
Matthew Auld 730b72480e drm/xe: prevent UAF around preempt fence
The fence lock is part of the queue, therefore in the current design
anything locking the fence should then also hold a ref to the queue to
prevent the queue from being freed.

However, currently it looks like we signal the fence and then drop the
queue ref, but if something is waiting on the fence, the waiter is
kicked to wake up at some later point, where upon waking up it first
grabs the lock before checking the fence state. But if we have already
dropped the queue ref, then the lock might already be freed as part of
the queue, leading to uaf.

To prevent this, move the fence lock into the fence itself so we don't
run into lifetime issues. Alternative might be to have device level
lock, or only release the queue in the fence release callback, however
that might require pushing to another worker to avoid locking issues.

Fixes: dd08ebf6c3 ("drm/xe: Introduce a new DRM driver for Intel GPUs")
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2454
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2342
References: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/2020
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Cc: Matthew Brost <matthew.brost@intel.com>
Cc: <stable@vger.kernel.org> # v6.8+
Reviewed-by: Matthew Brost <matthew.brost@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240814110129.825847-2-matthew.auld@intel.com
(cherry picked from commit 7116c35aac)
Signed-off-by: Rodrigo Vivi <rodrigo.vivi@intel.com>
2024-08-19 10:39:28 -04:00

921 lines
22 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2021 Intel Corporation
*/
#include "xe_exec_queue.h"
#include <linux/nospec.h>
#include <drm/drm_device.h>
#include <drm/drm_file.h>
#include <drm/xe_drm.h>
#include "xe_device.h"
#include "xe_gt.h"
#include "xe_hw_engine_class_sysfs.h"
#include "xe_hw_fence.h"
#include "xe_lrc.h"
#include "xe_macros.h"
#include "xe_migrate.h"
#include "xe_pm.h"
#include "xe_ring_ops_types.h"
#include "xe_trace.h"
#include "xe_vm.h"
enum xe_exec_queue_sched_prop {
XE_EXEC_QUEUE_JOB_TIMEOUT = 0,
XE_EXEC_QUEUE_TIMESLICE = 1,
XE_EXEC_QUEUE_PREEMPT_TIMEOUT = 2,
XE_EXEC_QUEUE_SCHED_PROP_MAX = 3,
};
static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
u64 extensions, int ext_number);
static void __xe_exec_queue_free(struct xe_exec_queue *q)
{
if (q->vm)
xe_vm_put(q->vm);
if (q->xef)
xe_file_put(q->xef);
kfree(q);
}
static struct xe_exec_queue *__xe_exec_queue_alloc(struct xe_device *xe,
struct xe_vm *vm,
u32 logical_mask,
u16 width, struct xe_hw_engine *hwe,
u32 flags, u64 extensions)
{
struct xe_exec_queue *q;
struct xe_gt *gt = hwe->gt;
int err;
/* only kernel queues can be permanent */
XE_WARN_ON((flags & EXEC_QUEUE_FLAG_PERMANENT) && !(flags & EXEC_QUEUE_FLAG_KERNEL));
q = kzalloc(struct_size(q, lrc, width), GFP_KERNEL);
if (!q)
return ERR_PTR(-ENOMEM);
kref_init(&q->refcount);
q->flags = flags;
q->hwe = hwe;
q->gt = gt;
q->class = hwe->class;
q->width = width;
q->logical_mask = logical_mask;
q->fence_irq = &gt->fence_irq[hwe->class];
q->ring_ops = gt->ring_ops[hwe->class];
q->ops = gt->exec_queue_ops;
INIT_LIST_HEAD(&q->lr.link);
INIT_LIST_HEAD(&q->multi_gt_link);
q->sched_props.timeslice_us = hwe->eclass->sched_props.timeslice_us;
q->sched_props.preempt_timeout_us =
hwe->eclass->sched_props.preempt_timeout_us;
q->sched_props.job_timeout_ms =
hwe->eclass->sched_props.job_timeout_ms;
if (q->flags & EXEC_QUEUE_FLAG_KERNEL &&
q->flags & EXEC_QUEUE_FLAG_HIGH_PRIORITY)
q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_KERNEL;
else
q->sched_props.priority = XE_EXEC_QUEUE_PRIORITY_NORMAL;
if (vm)
q->vm = xe_vm_get(vm);
if (extensions) {
/*
* may set q->usm, must come before xe_lrc_create(),
* may overwrite q->sched_props, must come before q->ops->init()
*/
err = exec_queue_user_extensions(xe, q, extensions, 0);
if (err) {
__xe_exec_queue_free(q);
return ERR_PTR(err);
}
}
return q;
}
static int __xe_exec_queue_init(struct xe_exec_queue *q)
{
struct xe_vm *vm = q->vm;
int i, err;
if (vm) {
err = xe_vm_lock(vm, true);
if (err)
return err;
}
for (i = 0; i < q->width; ++i) {
q->lrc[i] = xe_lrc_create(q->hwe, q->vm, SZ_16K);
if (IS_ERR(q->lrc[i])) {
err = PTR_ERR(q->lrc[i]);
goto err_unlock;
}
}
if (vm)
xe_vm_unlock(vm);
err = q->ops->init(q);
if (err)
goto err_lrc;
return 0;
err_unlock:
if (vm)
xe_vm_unlock(vm);
err_lrc:
for (i = i - 1; i >= 0; --i)
xe_lrc_put(q->lrc[i]);
return err;
}
struct xe_exec_queue *xe_exec_queue_create(struct xe_device *xe, struct xe_vm *vm,
u32 logical_mask, u16 width,
struct xe_hw_engine *hwe, u32 flags,
u64 extensions)
{
struct xe_exec_queue *q;
int err;
q = __xe_exec_queue_alloc(xe, vm, logical_mask, width, hwe, flags,
extensions);
if (IS_ERR(q))
return q;
err = __xe_exec_queue_init(q);
if (err)
goto err_post_alloc;
return q;
err_post_alloc:
__xe_exec_queue_free(q);
return ERR_PTR(err);
}
struct xe_exec_queue *xe_exec_queue_create_class(struct xe_device *xe, struct xe_gt *gt,
struct xe_vm *vm,
enum xe_engine_class class, u32 flags)
{
struct xe_hw_engine *hwe, *hwe0 = NULL;
enum xe_hw_engine_id id;
u32 logical_mask = 0;
for_each_hw_engine(hwe, gt, id) {
if (xe_hw_engine_is_reserved(hwe))
continue;
if (hwe->class == class) {
logical_mask |= BIT(hwe->logical_instance);
if (!hwe0)
hwe0 = hwe;
}
}
if (!logical_mask)
return ERR_PTR(-ENODEV);
return xe_exec_queue_create(xe, vm, logical_mask, 1, hwe0, flags, 0);
}
void xe_exec_queue_destroy(struct kref *ref)
{
struct xe_exec_queue *q = container_of(ref, struct xe_exec_queue, refcount);
struct xe_exec_queue *eq, *next;
xe_exec_queue_last_fence_put_unlocked(q);
if (!(q->flags & EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD)) {
list_for_each_entry_safe(eq, next, &q->multi_gt_list,
multi_gt_link)
xe_exec_queue_put(eq);
}
q->ops->fini(q);
}
void xe_exec_queue_fini(struct xe_exec_queue *q)
{
int i;
for (i = 0; i < q->width; ++i)
xe_lrc_put(q->lrc[i]);
__xe_exec_queue_free(q);
}
void xe_exec_queue_assign_name(struct xe_exec_queue *q, u32 instance)
{
switch (q->class) {
case XE_ENGINE_CLASS_RENDER:
snprintf(q->name, sizeof(q->name), "rcs%d", instance);
break;
case XE_ENGINE_CLASS_VIDEO_DECODE:
snprintf(q->name, sizeof(q->name), "vcs%d", instance);
break;
case XE_ENGINE_CLASS_VIDEO_ENHANCE:
snprintf(q->name, sizeof(q->name), "vecs%d", instance);
break;
case XE_ENGINE_CLASS_COPY:
snprintf(q->name, sizeof(q->name), "bcs%d", instance);
break;
case XE_ENGINE_CLASS_COMPUTE:
snprintf(q->name, sizeof(q->name), "ccs%d", instance);
break;
case XE_ENGINE_CLASS_OTHER:
snprintf(q->name, sizeof(q->name), "gsccs%d", instance);
break;
default:
XE_WARN_ON(q->class);
}
}
struct xe_exec_queue *xe_exec_queue_lookup(struct xe_file *xef, u32 id)
{
struct xe_exec_queue *q;
mutex_lock(&xef->exec_queue.lock);
q = xa_load(&xef->exec_queue.xa, id);
if (q)
xe_exec_queue_get(q);
mutex_unlock(&xef->exec_queue.lock);
return q;
}
enum xe_exec_queue_priority
xe_exec_queue_device_get_max_priority(struct xe_device *xe)
{
return capable(CAP_SYS_NICE) ? XE_EXEC_QUEUE_PRIORITY_HIGH :
XE_EXEC_QUEUE_PRIORITY_NORMAL;
}
static int exec_queue_set_priority(struct xe_device *xe, struct xe_exec_queue *q,
u64 value)
{
if (XE_IOCTL_DBG(xe, value > XE_EXEC_QUEUE_PRIORITY_HIGH))
return -EINVAL;
if (XE_IOCTL_DBG(xe, value > xe_exec_queue_device_get_max_priority(xe)))
return -EPERM;
q->sched_props.priority = value;
return 0;
}
static bool xe_exec_queue_enforce_schedule_limit(void)
{
#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
return true;
#else
return !capable(CAP_SYS_NICE);
#endif
}
static void
xe_exec_queue_get_prop_minmax(struct xe_hw_engine_class_intf *eclass,
enum xe_exec_queue_sched_prop prop,
u32 *min, u32 *max)
{
switch (prop) {
case XE_EXEC_QUEUE_JOB_TIMEOUT:
*min = eclass->sched_props.job_timeout_min;
*max = eclass->sched_props.job_timeout_max;
break;
case XE_EXEC_QUEUE_TIMESLICE:
*min = eclass->sched_props.timeslice_min;
*max = eclass->sched_props.timeslice_max;
break;
case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
*min = eclass->sched_props.preempt_timeout_min;
*max = eclass->sched_props.preempt_timeout_max;
break;
default:
break;
}
#if IS_ENABLED(CONFIG_DRM_XE_ENABLE_SCHEDTIMEOUT_LIMIT)
if (capable(CAP_SYS_NICE)) {
switch (prop) {
case XE_EXEC_QUEUE_JOB_TIMEOUT:
*min = XE_HW_ENGINE_JOB_TIMEOUT_MIN;
*max = XE_HW_ENGINE_JOB_TIMEOUT_MAX;
break;
case XE_EXEC_QUEUE_TIMESLICE:
*min = XE_HW_ENGINE_TIMESLICE_MIN;
*max = XE_HW_ENGINE_TIMESLICE_MAX;
break;
case XE_EXEC_QUEUE_PREEMPT_TIMEOUT:
*min = XE_HW_ENGINE_PREEMPT_TIMEOUT_MIN;
*max = XE_HW_ENGINE_PREEMPT_TIMEOUT_MAX;
break;
default:
break;
}
}
#endif
}
static int exec_queue_set_timeslice(struct xe_device *xe, struct xe_exec_queue *q,
u64 value)
{
u32 min = 0, max = 0;
xe_exec_queue_get_prop_minmax(q->hwe->eclass,
XE_EXEC_QUEUE_TIMESLICE, &min, &max);
if (xe_exec_queue_enforce_schedule_limit() &&
!xe_hw_engine_timeout_in_range(value, min, max))
return -EINVAL;
q->sched_props.timeslice_us = value;
return 0;
}
typedef int (*xe_exec_queue_set_property_fn)(struct xe_device *xe,
struct xe_exec_queue *q,
u64 value);
static const xe_exec_queue_set_property_fn exec_queue_set_property_funcs[] = {
[DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY] = exec_queue_set_priority,
[DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE] = exec_queue_set_timeslice,
};
static int exec_queue_user_ext_set_property(struct xe_device *xe,
struct xe_exec_queue *q,
u64 extension)
{
u64 __user *address = u64_to_user_ptr(extension);
struct drm_xe_ext_set_property ext;
int err;
u32 idx;
err = __copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.property >=
ARRAY_SIZE(exec_queue_set_property_funcs)) ||
XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_PRIORITY &&
ext.property != DRM_XE_EXEC_QUEUE_SET_PROPERTY_TIMESLICE))
return -EINVAL;
idx = array_index_nospec(ext.property, ARRAY_SIZE(exec_queue_set_property_funcs));
if (!exec_queue_set_property_funcs[idx])
return -EINVAL;
return exec_queue_set_property_funcs[idx](xe, q, ext.value);
}
typedef int (*xe_exec_queue_user_extension_fn)(struct xe_device *xe,
struct xe_exec_queue *q,
u64 extension);
static const xe_exec_queue_user_extension_fn exec_queue_user_extension_funcs[] = {
[DRM_XE_EXEC_QUEUE_EXTENSION_SET_PROPERTY] = exec_queue_user_ext_set_property,
};
#define MAX_USER_EXTENSIONS 16
static int exec_queue_user_extensions(struct xe_device *xe, struct xe_exec_queue *q,
u64 extensions, int ext_number)
{
u64 __user *address = u64_to_user_ptr(extensions);
struct drm_xe_user_extension ext;
int err;
u32 idx;
if (XE_IOCTL_DBG(xe, ext_number >= MAX_USER_EXTENSIONS))
return -E2BIG;
err = __copy_from_user(&ext, address, sizeof(ext));
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, ext.pad) ||
XE_IOCTL_DBG(xe, ext.name >=
ARRAY_SIZE(exec_queue_user_extension_funcs)))
return -EINVAL;
idx = array_index_nospec(ext.name,
ARRAY_SIZE(exec_queue_user_extension_funcs));
err = exec_queue_user_extension_funcs[idx](xe, q, extensions);
if (XE_IOCTL_DBG(xe, err))
return err;
if (ext.next_extension)
return exec_queue_user_extensions(xe, q, ext.next_extension,
++ext_number);
return 0;
}
static const enum xe_engine_class user_to_xe_engine_class[] = {
[DRM_XE_ENGINE_CLASS_RENDER] = XE_ENGINE_CLASS_RENDER,
[DRM_XE_ENGINE_CLASS_COPY] = XE_ENGINE_CLASS_COPY,
[DRM_XE_ENGINE_CLASS_VIDEO_DECODE] = XE_ENGINE_CLASS_VIDEO_DECODE,
[DRM_XE_ENGINE_CLASS_VIDEO_ENHANCE] = XE_ENGINE_CLASS_VIDEO_ENHANCE,
[DRM_XE_ENGINE_CLASS_COMPUTE] = XE_ENGINE_CLASS_COMPUTE,
};
static struct xe_hw_engine *
find_hw_engine(struct xe_device *xe,
struct drm_xe_engine_class_instance eci)
{
u32 idx;
if (eci.engine_class >= ARRAY_SIZE(user_to_xe_engine_class))
return NULL;
if (eci.gt_id >= xe->info.gt_count)
return NULL;
idx = array_index_nospec(eci.engine_class,
ARRAY_SIZE(user_to_xe_engine_class));
return xe_gt_hw_engine(xe_device_get_gt(xe, eci.gt_id),
user_to_xe_engine_class[idx],
eci.engine_instance, true);
}
static u32 bind_exec_queue_logical_mask(struct xe_device *xe, struct xe_gt *gt,
struct drm_xe_engine_class_instance *eci,
u16 width, u16 num_placements)
{
struct xe_hw_engine *hwe;
enum xe_hw_engine_id id;
u32 logical_mask = 0;
if (XE_IOCTL_DBG(xe, width != 1))
return 0;
if (XE_IOCTL_DBG(xe, num_placements != 1))
return 0;
if (XE_IOCTL_DBG(xe, eci[0].engine_instance != 0))
return 0;
eci[0].engine_class = DRM_XE_ENGINE_CLASS_COPY;
for_each_hw_engine(hwe, gt, id) {
if (xe_hw_engine_is_reserved(hwe))
continue;
if (hwe->class ==
user_to_xe_engine_class[DRM_XE_ENGINE_CLASS_COPY])
logical_mask |= BIT(hwe->logical_instance);
}
return logical_mask;
}
static u32 calc_validate_logical_mask(struct xe_device *xe, struct xe_gt *gt,
struct drm_xe_engine_class_instance *eci,
u16 width, u16 num_placements)
{
int len = width * num_placements;
int i, j, n;
u16 class;
u16 gt_id;
u32 return_mask = 0, prev_mask;
if (XE_IOCTL_DBG(xe, !xe_device_uc_enabled(xe) &&
len > 1))
return 0;
for (i = 0; i < width; ++i) {
u32 current_mask = 0;
for (j = 0; j < num_placements; ++j) {
struct xe_hw_engine *hwe;
n = j * width + i;
hwe = find_hw_engine(xe, eci[n]);
if (XE_IOCTL_DBG(xe, !hwe))
return 0;
if (XE_IOCTL_DBG(xe, xe_hw_engine_is_reserved(hwe)))
return 0;
if (XE_IOCTL_DBG(xe, n && eci[n].gt_id != gt_id) ||
XE_IOCTL_DBG(xe, n && eci[n].engine_class != class))
return 0;
class = eci[n].engine_class;
gt_id = eci[n].gt_id;
if (width == 1 || !i)
return_mask |= BIT(eci[n].engine_instance);
current_mask |= BIT(eci[n].engine_instance);
}
/* Parallel submissions must be logically contiguous */
if (i && XE_IOCTL_DBG(xe, current_mask != prev_mask << 1))
return 0;
prev_mask = current_mask;
}
return return_mask;
}
int xe_exec_queue_create_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_create *args = data;
struct drm_xe_engine_class_instance eci[XE_HW_ENGINE_MAX_INSTANCE];
struct drm_xe_engine_class_instance __user *user_eci =
u64_to_user_ptr(args->instances);
struct xe_hw_engine *hwe;
struct xe_vm *vm, *migrate_vm;
struct xe_gt *gt;
struct xe_exec_queue *q = NULL;
u32 logical_mask;
u32 id;
u32 len;
int err;
if (XE_IOCTL_DBG(xe, args->flags) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
len = args->width * args->num_placements;
if (XE_IOCTL_DBG(xe, !len || len > XE_HW_ENGINE_MAX_INSTANCE))
return -EINVAL;
err = __copy_from_user(eci, user_eci,
sizeof(struct drm_xe_engine_class_instance) *
len);
if (XE_IOCTL_DBG(xe, err))
return -EFAULT;
if (XE_IOCTL_DBG(xe, eci[0].gt_id >= xe->info.gt_count))
return -EINVAL;
if (eci[0].engine_class == DRM_XE_ENGINE_CLASS_VM_BIND) {
for_each_gt(gt, xe, id) {
struct xe_exec_queue *new;
u32 flags;
if (xe_gt_is_media_type(gt))
continue;
eci[0].gt_id = gt->info.id;
logical_mask = bind_exec_queue_logical_mask(xe, gt, eci,
args->width,
args->num_placements);
if (XE_IOCTL_DBG(xe, !logical_mask))
return -EINVAL;
hwe = find_hw_engine(xe, eci[0]);
if (XE_IOCTL_DBG(xe, !hwe))
return -EINVAL;
/* The migration vm doesn't hold rpm ref */
xe_pm_runtime_get_noresume(xe);
flags = EXEC_QUEUE_FLAG_VM | (id ? EXEC_QUEUE_FLAG_BIND_ENGINE_CHILD : 0);
migrate_vm = xe_migrate_get_vm(gt_to_tile(gt)->migrate);
new = xe_exec_queue_create(xe, migrate_vm, logical_mask,
args->width, hwe, flags,
args->extensions);
xe_pm_runtime_put(xe); /* now held by engine */
xe_vm_put(migrate_vm);
if (IS_ERR(new)) {
err = PTR_ERR(new);
if (q)
goto put_exec_queue;
return err;
}
if (id == 0)
q = new;
else
list_add_tail(&new->multi_gt_list,
&q->multi_gt_link);
}
} else {
gt = xe_device_get_gt(xe, eci[0].gt_id);
logical_mask = calc_validate_logical_mask(xe, gt, eci,
args->width,
args->num_placements);
if (XE_IOCTL_DBG(xe, !logical_mask))
return -EINVAL;
hwe = find_hw_engine(xe, eci[0]);
if (XE_IOCTL_DBG(xe, !hwe))
return -EINVAL;
vm = xe_vm_lookup(xef, args->vm_id);
if (XE_IOCTL_DBG(xe, !vm))
return -ENOENT;
err = down_read_interruptible(&vm->lock);
if (err) {
xe_vm_put(vm);
return err;
}
if (XE_IOCTL_DBG(xe, xe_vm_is_closed_or_banned(vm))) {
up_read(&vm->lock);
xe_vm_put(vm);
return -ENOENT;
}
q = xe_exec_queue_create(xe, vm, logical_mask,
args->width, hwe, 0,
args->extensions);
up_read(&vm->lock);
xe_vm_put(vm);
if (IS_ERR(q))
return PTR_ERR(q);
if (xe_vm_in_preempt_fence_mode(vm)) {
q->lr.context = dma_fence_context_alloc(1);
err = xe_vm_add_compute_exec_queue(vm, q);
if (XE_IOCTL_DBG(xe, err))
goto put_exec_queue;
}
}
mutex_lock(&xef->exec_queue.lock);
err = xa_alloc(&xef->exec_queue.xa, &id, q, xa_limit_32b, GFP_KERNEL);
mutex_unlock(&xef->exec_queue.lock);
if (err)
goto kill_exec_queue;
args->exec_queue_id = id;
q->xef = xe_file_get(xef);
return 0;
kill_exec_queue:
xe_exec_queue_kill(q);
put_exec_queue:
xe_exec_queue_put(q);
return err;
}
int xe_exec_queue_get_property_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_get_property *args = data;
struct xe_exec_queue *q;
int ret;
if (XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
q = xe_exec_queue_lookup(xef, args->exec_queue_id);
if (XE_IOCTL_DBG(xe, !q))
return -ENOENT;
switch (args->property) {
case DRM_XE_EXEC_QUEUE_GET_PROPERTY_BAN:
args->value = q->ops->reset_status(q);
ret = 0;
break;
default:
ret = -EINVAL;
}
xe_exec_queue_put(q);
return ret;
}
/**
* xe_exec_queue_is_lr() - Whether an exec_queue is long-running
* @q: The exec_queue
*
* Return: True if the exec_queue is long-running, false otherwise.
*/
bool xe_exec_queue_is_lr(struct xe_exec_queue *q)
{
return q->vm && xe_vm_in_lr_mode(q->vm) &&
!(q->flags & EXEC_QUEUE_FLAG_VM);
}
static s32 xe_exec_queue_num_job_inflight(struct xe_exec_queue *q)
{
return q->lrc[0]->fence_ctx.next_seqno - xe_lrc_seqno(q->lrc[0]) - 1;
}
/**
* xe_exec_queue_ring_full() - Whether an exec_queue's ring is full
* @q: The exec_queue
*
* Return: True if the exec_queue's ring is full, false otherwise.
*/
bool xe_exec_queue_ring_full(struct xe_exec_queue *q)
{
struct xe_lrc *lrc = q->lrc[0];
s32 max_job = lrc->ring.size / MAX_JOB_SIZE_BYTES;
return xe_exec_queue_num_job_inflight(q) >= max_job;
}
/**
* xe_exec_queue_is_idle() - Whether an exec_queue is idle.
* @q: The exec_queue
*
* FIXME: Need to determine what to use as the short-lived
* timeline lock for the exec_queues, so that the return value
* of this function becomes more than just an advisory
* snapshot in time. The timeline lock must protect the
* seqno from racing submissions on the same exec_queue.
* Typically vm->resv, but user-created timeline locks use the migrate vm
* and never grabs the migrate vm->resv so we have a race there.
*
* Return: True if the exec_queue is idle, false otherwise.
*/
bool xe_exec_queue_is_idle(struct xe_exec_queue *q)
{
if (xe_exec_queue_is_parallel(q)) {
int i;
for (i = 0; i < q->width; ++i) {
if (xe_lrc_seqno(q->lrc[i]) !=
q->lrc[i]->fence_ctx.next_seqno - 1)
return false;
}
return true;
}
return xe_lrc_seqno(q->lrc[0]) ==
q->lrc[0]->fence_ctx.next_seqno - 1;
}
/**
* xe_exec_queue_update_run_ticks() - Update run time in ticks for this exec queue
* from hw
* @q: The exec queue
*
* Update the timestamp saved by HW for this exec queue and save run ticks
* calculated by using the delta from last update.
*/
void xe_exec_queue_update_run_ticks(struct xe_exec_queue *q)
{
struct xe_file *xef;
struct xe_lrc *lrc;
u32 old_ts, new_ts;
/*
* Jobs that are run during driver load may use an exec_queue, but are
* not associated with a user xe file, so avoid accumulating busyness
* for kernel specific work.
*/
if (!q->vm || !q->vm->xef)
return;
xef = q->vm->xef;
/*
* Only sample the first LRC. For parallel submission, all of them are
* scheduled together and we compensate that below by multiplying by
* width - this may introduce errors if that premise is not true and
* they don't exit 100% aligned. On the other hand, looping through
* the LRCs and reading them in different time could also introduce
* errors.
*/
lrc = q->lrc[0];
new_ts = xe_lrc_update_timestamp(lrc, &old_ts);
xef->run_ticks[q->class] += (new_ts - old_ts) * q->width;
}
void xe_exec_queue_kill(struct xe_exec_queue *q)
{
struct xe_exec_queue *eq = q, *next;
list_for_each_entry_safe(eq, next, &eq->multi_gt_list,
multi_gt_link) {
q->ops->kill(eq);
xe_vm_remove_compute_exec_queue(q->vm, eq);
}
q->ops->kill(q);
xe_vm_remove_compute_exec_queue(q->vm, q);
}
int xe_exec_queue_destroy_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct xe_device *xe = to_xe_device(dev);
struct xe_file *xef = to_xe_file(file);
struct drm_xe_exec_queue_destroy *args = data;
struct xe_exec_queue *q;
if (XE_IOCTL_DBG(xe, args->pad) ||
XE_IOCTL_DBG(xe, args->reserved[0] || args->reserved[1]))
return -EINVAL;
mutex_lock(&xef->exec_queue.lock);
q = xa_erase(&xef->exec_queue.xa, args->exec_queue_id);
mutex_unlock(&xef->exec_queue.lock);
if (XE_IOCTL_DBG(xe, !q))
return -ENOENT;
xe_exec_queue_kill(q);
trace_xe_exec_queue_close(q);
xe_exec_queue_put(q);
return 0;
}
static void xe_exec_queue_last_fence_lockdep_assert(struct xe_exec_queue *q,
struct xe_vm *vm)
{
if (q->flags & EXEC_QUEUE_FLAG_VM)
lockdep_assert_held(&vm->lock);
else
xe_vm_assert_held(vm);
}
/**
* xe_exec_queue_last_fence_put() - Drop ref to last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
*/
void xe_exec_queue_last_fence_put(struct xe_exec_queue *q, struct xe_vm *vm)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
if (q->last_fence) {
dma_fence_put(q->last_fence);
q->last_fence = NULL;
}
}
/**
* xe_exec_queue_last_fence_put_unlocked() - Drop ref to last fence unlocked
* @q: The exec queue
*
* Only safe to be called from xe_exec_queue_destroy().
*/
void xe_exec_queue_last_fence_put_unlocked(struct xe_exec_queue *q)
{
if (q->last_fence) {
dma_fence_put(q->last_fence);
q->last_fence = NULL;
}
}
/**
* xe_exec_queue_last_fence_get() - Get last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
*
* Get last fence, takes a ref
*
* Returns: last fence if not signaled, dma fence stub if signaled
*/
struct dma_fence *xe_exec_queue_last_fence_get(struct xe_exec_queue *q,
struct xe_vm *vm)
{
struct dma_fence *fence;
xe_exec_queue_last_fence_lockdep_assert(q, vm);
if (q->last_fence &&
test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &q->last_fence->flags))
xe_exec_queue_last_fence_put(q, vm);
fence = q->last_fence ? q->last_fence : dma_fence_get_stub();
dma_fence_get(fence);
return fence;
}
/**
* xe_exec_queue_last_fence_set() - Set last fence
* @q: The exec queue
* @vm: The VM the engine does a bind or exec for
* @fence: The fence
*
* Set the last fence for the engine. Increases reference count for fence, when
* closing engine xe_exec_queue_last_fence_put should be called.
*/
void xe_exec_queue_last_fence_set(struct xe_exec_queue *q, struct xe_vm *vm,
struct dma_fence *fence)
{
xe_exec_queue_last_fence_lockdep_assert(q, vm);
xe_exec_queue_last_fence_put(q, vm);
q->last_fence = dma_fence_get(fence);
}