Files
linux/drivers/gpu/drm/xe/xe_guc.c
Michal Wajdeczko d21d44dbdd drm/xe/vf: Don't touch GuC irq registers if using memory irqs
On platforms where VFs are using memory based interrupts, we
missed invalid access to no longer existing interrupt registers,
as we keep them marked with XE_REG_OPTION_VF. To fix that just
either setup memirq vectors in GuC or enable legacy interrupts.

Fixes: aef4eb7c7d ("drm/xe/vf: Setup memory based interrupts in GuC")
Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com>
Cc: Matt Roper <matthew.d.roper@intel.com>
Reviewed-by: Matt Roper <matthew.d.roper@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20240617154736.685-1-michal.wajdeczko@intel.com
(cherry picked from commit f0ccd2d805)
Signed-off-by: Thomas Hellström <thomas.hellstrom@linux.intel.com>
2024-06-20 09:22:37 +02:00

980 lines
24 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "xe_guc.h"
#include <drm/drm_managed.h>
#include <generated/xe_wa_oob.h>
#include "abi/guc_actions_abi.h"
#include "abi/guc_errors_abi.h"
#include "regs/xe_gt_regs.h"
#include "regs/xe_gtt_defs.h"
#include "regs/xe_guc_regs.h"
#include "xe_bo.h"
#include "xe_device.h"
#include "xe_force_wake.h"
#include "xe_gt.h"
#include "xe_gt_printk.h"
#include "xe_guc_ads.h"
#include "xe_guc_ct.h"
#include "xe_guc_hwconfig.h"
#include "xe_guc_log.h"
#include "xe_guc_pc.h"
#include "xe_guc_relay.h"
#include "xe_guc_submit.h"
#include "xe_memirq.h"
#include "xe_mmio.h"
#include "xe_platform_types.h"
#include "xe_sriov.h"
#include "xe_uc.h"
#include "xe_uc_fw.h"
#include "xe_wa.h"
#include "xe_wopcm.h"
static u32 guc_bo_ggtt_addr(struct xe_guc *guc,
struct xe_bo *bo)
{
struct xe_device *xe = guc_to_xe(guc);
u32 addr = xe_bo_ggtt_addr(bo);
/* GuC addresses above GUC_GGTT_TOP don't map through the GTT */
xe_assert(xe, addr >= xe_wopcm_size(guc_to_xe(guc)));
xe_assert(xe, addr < GUC_GGTT_TOP);
xe_assert(xe, bo->size <= GUC_GGTT_TOP - addr);
return addr;
}
static u32 guc_ctl_debug_flags(struct xe_guc *guc)
{
u32 level = xe_guc_log_get_level(&guc->log);
u32 flags = 0;
if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
flags |= GUC_LOG_DISABLED;
else
flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
GUC_LOG_VERBOSITY_SHIFT;
return flags;
}
static u32 guc_ctl_feature_flags(struct xe_guc *guc)
{
u32 flags = 0;
if (!guc_to_xe(guc)->info.skip_guc_pc)
flags |= GUC_CTL_ENABLE_SLPC;
return flags;
}
static u32 guc_ctl_log_params_flags(struct xe_guc *guc)
{
u32 offset = guc_bo_ggtt_addr(guc, guc->log.bo) >> PAGE_SHIFT;
u32 flags;
#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
#define LOG_UNIT SZ_1M
#define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS
#else
#define LOG_UNIT SZ_4K
#define LOG_FLAG 0
#endif
#if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0)
#define CAPTURE_UNIT SZ_1M
#define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS
#else
#define CAPTURE_UNIT SZ_4K
#define CAPTURE_FLAG 0
#endif
BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT));
BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT));
BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE);
BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT));
BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) >
(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) >
(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) >
(GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT));
flags = GUC_LOG_VALID |
GUC_LOG_NOTIFY_ON_HALF_FULL |
CAPTURE_FLAG |
LOG_FLAG |
((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) <<
GUC_LOG_CAPTURE_SHIFT) |
(offset << GUC_LOG_BUF_ADDR_SHIFT);
#undef LOG_UNIT
#undef LOG_FLAG
#undef CAPTURE_UNIT
#undef CAPTURE_FLAG
return flags;
}
static u32 guc_ctl_ads_flags(struct xe_guc *guc)
{
u32 ads = guc_bo_ggtt_addr(guc, guc->ads.bo) >> PAGE_SHIFT;
u32 flags = ads << GUC_ADS_ADDR_SHIFT;
return flags;
}
static u32 guc_ctl_wa_flags(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
u32 flags = 0;
if (XE_WA(gt, 22012773006))
flags |= GUC_WA_POLLCS;
if (XE_WA(gt, 14014475959))
flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
if (XE_WA(gt, 22011391025))
flags |= GUC_WA_DUAL_QUEUE;
/*
* Wa_22011802037: FIXME - there's more to be done than simply setting
* this flag: make sure each CS is stopped when preparing for GT reset
* and wait for pending MI_FW.
*/
if (GRAPHICS_VERx100(xe) < 1270)
flags |= GUC_WA_PRE_PARSER;
if (XE_WA(gt, 22012727170) || XE_WA(gt, 22012727685))
flags |= GUC_WA_CONTEXT_ISOLATION;
if (XE_WA(gt, 18020744125) &&
!xe_hw_engine_mask_per_class(gt, XE_ENGINE_CLASS_RENDER))
flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
if (XE_WA(gt, 1509372804))
flags |= GUC_WA_RENDER_RST_RC6_EXIT;
if (XE_WA(gt, 14018913170))
flags |= GUC_WA_ENABLE_TSC_CHECK_ON_RC6;
return flags;
}
static u32 guc_ctl_devid(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
return (((u32)xe->info.devid) << 16) | xe->info.revid;
}
static void guc_print_params(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 *params = guc->params;
int i;
BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
BUILD_BUG_ON(GUC_CTL_MAX_DWORDS + 2 != SOFT_SCRATCH_COUNT);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
xe_gt_dbg(gt, "GuC param[%2d] = 0x%08x\n", i, params[i]);
}
static void guc_init_params(struct xe_guc *guc)
{
u32 *params = guc->params;
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = 0;
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = 0;
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
guc_print_params(guc);
}
static void guc_init_params_post_hwconfig(struct xe_guc *guc)
{
u32 *params = guc->params;
params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
guc_print_params(guc);
}
/*
* Initialize the GuC parameter block before starting the firmware
* transfer. These parameters are read by the firmware on startup
* and cannot be changed thereafter.
*/
static void guc_write_params(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
int i;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
xe_mmio_write32(gt, SOFT_SCRATCH(0), 0);
for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
xe_mmio_write32(gt, SOFT_SCRATCH(1 + i), guc->params[i]);
}
static void guc_fini(struct drm_device *drm, void *arg)
{
struct xe_guc *guc = arg;
struct xe_gt *gt = guc_to_gt(guc);
xe_gt_WARN_ON(gt, xe_force_wake_get(gt_to_fw(gt), XE_FORCEWAKE_ALL));
xe_uc_fini_hw(&guc_to_gt(guc)->uc);
xe_force_wake_put(gt_to_fw(gt), XE_FORCEWAKE_ALL);
}
/**
* xe_guc_comm_init_early - early initialization of GuC communication
* @guc: the &xe_guc to initialize
*
* Must be called prior to first MMIO communication with GuC firmware.
*/
void xe_guc_comm_init_early(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
if (xe_gt_is_media_type(gt))
guc->notify_reg = MED_GUC_HOST_INTERRUPT;
else
guc->notify_reg = GUC_HOST_INTERRUPT;
}
static int xe_guc_realloc_post_hwconfig(struct xe_guc *guc)
{
struct xe_tile *tile = gt_to_tile(guc_to_gt(guc));
struct xe_device *xe = guc_to_xe(guc);
int ret;
if (!IS_DGFX(guc_to_xe(guc)))
return 0;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->fw.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->log.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ads.bo);
if (ret)
return ret;
ret = xe_managed_bo_reinit_in_vram(xe, tile, &guc->ct.bo);
if (ret)
return ret;
return 0;
}
int xe_guc_init(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
int ret;
guc->fw.type = XE_UC_FW_TYPE_GUC;
ret = xe_uc_fw_init(&guc->fw);
if (ret)
goto out;
if (!xe_uc_fw_is_enabled(&guc->fw))
return 0;
ret = xe_guc_log_init(&guc->log);
if (ret)
goto out;
ret = xe_guc_ads_init(&guc->ads);
if (ret)
goto out;
ret = xe_guc_ct_init(&guc->ct);
if (ret)
goto out;
ret = xe_guc_relay_init(&guc->relay);
if (ret)
goto out;
ret = drmm_add_action_or_reset(&xe->drm, guc_fini, guc);
if (ret)
goto out;
guc_init_params(guc);
xe_guc_comm_init_early(guc);
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
return 0;
out:
xe_gt_err(gt, "GuC init failed with %pe\n", ERR_PTR(ret));
return ret;
}
/**
* xe_guc_init_post_hwconfig - initialize GuC post hwconfig load
* @guc: The GuC object
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_init_post_hwconfig(struct xe_guc *guc)
{
int ret;
ret = xe_guc_realloc_post_hwconfig(guc);
if (ret)
return ret;
guc_init_params_post_hwconfig(guc);
ret = xe_guc_pc_init(&guc->pc);
if (ret)
return ret;
return xe_guc_ads_init_post_hwconfig(&guc->ads);
}
int xe_guc_post_load_init(struct xe_guc *guc)
{
xe_guc_ads_populate_post_load(&guc->ads);
guc->submission_state.enabled = true;
return 0;
}
int xe_guc_reset(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 guc_status, gdrst;
int ret;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
xe_mmio_write32(gt, GDRST, GRDOM_GUC);
ret = xe_mmio_wait32(gt, GDRST, GRDOM_GUC, 0, 5000, &gdrst, false);
if (ret) {
xe_gt_err(gt, "GuC reset timed out, GDRST=%#x\n", gdrst);
goto err_out;
}
guc_status = xe_mmio_read32(gt, GUC_STATUS);
if (!(guc_status & GS_MIA_IN_RESET)) {
xe_gt_err(gt, "GuC status: %#x, MIA core expected to be in reset\n",
guc_status);
ret = -EIO;
goto err_out;
}
return 0;
err_out:
return ret;
}
static void guc_prepare_xfer(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
struct xe_device *xe = guc_to_xe(guc);
u32 shim_flags = GUC_ENABLE_READ_CACHE_LOGIC |
GUC_ENABLE_READ_CACHE_FOR_SRAM_DATA |
GUC_ENABLE_READ_CACHE_FOR_WOPCM_DATA |
GUC_ENABLE_MIA_CLOCK_GATING;
if (GRAPHICS_VERx100(xe) < 1250)
shim_flags |= GUC_DISABLE_SRAM_INIT_TO_ZEROES |
GUC_ENABLE_MIA_CACHING;
if (GRAPHICS_VER(xe) >= 20 || xe->info.platform == XE_PVC)
shim_flags |= REG_FIELD_PREP(GUC_MOCS_INDEX_MASK, gt->mocs.uc_index);
/* Must program this register before loading the ucode with DMA */
xe_mmio_write32(gt, GUC_SHIM_CONTROL, shim_flags);
xe_mmio_write32(gt, GT_PM_CONFIG, GT_DOORBELL_ENABLE);
}
/*
* Supporting MMIO & in memory RSA
*/
static int guc_xfer_rsa(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 rsa[UOS_RSA_SCRATCH_COUNT];
size_t copied;
int i;
if (guc->fw.rsa_size > 256) {
u32 rsa_ggtt_addr = xe_bo_ggtt_addr(guc->fw.bo) +
xe_uc_fw_rsa_offset(&guc->fw);
xe_mmio_write32(gt, UOS_RSA_SCRATCH(0), rsa_ggtt_addr);
return 0;
}
copied = xe_uc_fw_copy_rsa(&guc->fw, rsa, sizeof(rsa));
if (copied < sizeof(rsa))
return -ENOMEM;
for (i = 0; i < UOS_RSA_SCRATCH_COUNT; i++)
xe_mmio_write32(gt, UOS_RSA_SCRATCH(i), rsa[i]);
return 0;
}
static int guc_wait_ucode(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 status;
int ret;
/*
* Wait for the GuC to start up.
* NB: Docs recommend not using the interrupt for completion.
* Measurements indicate this should take no more than 20ms
* (assuming the GT clock is at maximum frequency). So, a
* timeout here indicates that the GuC has failed and is unusable.
* (Higher levels of the driver may decide to reset the GuC and
* attempt the ucode load again if this happens.)
*
* FIXME: There is a known (but exceedingly unlikely) race condition
* where the asynchronous frequency management code could reduce
* the GT clock while a GuC reload is in progress (during a full
* GT reset). A fix is in progress but there are complex locking
* issues to be resolved. In the meantime bump the timeout to
* 200ms. Even at slowest clock, this should be sufficient. And
* in the working case, a larger timeout makes no difference.
*/
ret = xe_mmio_wait32(gt, GUC_STATUS, GS_UKERNEL_MASK,
FIELD_PREP(GS_UKERNEL_MASK, XE_GUC_LOAD_STATUS_READY),
200000, &status, false);
if (ret) {
xe_gt_info(gt, "GuC load failed: status = 0x%08X\n", status);
xe_gt_info(gt, "GuC status: Reset = %u, BootROM = %#X, UKernel = %#X, MIA = %#X, Auth = %#X\n",
REG_FIELD_GET(GS_MIA_IN_RESET, status),
REG_FIELD_GET(GS_BOOTROM_MASK, status),
REG_FIELD_GET(GS_UKERNEL_MASK, status),
REG_FIELD_GET(GS_MIA_MASK, status),
REG_FIELD_GET(GS_AUTH_STATUS_MASK, status));
if ((status & GS_BOOTROM_MASK) == GS_BOOTROM_RSA_FAILED) {
xe_gt_info(gt, "GuC firmware signature verification failed\n");
ret = -ENOEXEC;
}
if (REG_FIELD_GET(GS_UKERNEL_MASK, status) ==
XE_GUC_LOAD_STATUS_EXCEPTION) {
xe_gt_info(gt, "GuC firmware exception. EIP: %#x\n",
xe_mmio_read32(gt, SOFT_SCRATCH(13)));
ret = -ENXIO;
}
} else {
xe_gt_dbg(gt, "GuC successfully loaded\n");
}
return ret;
}
static int __xe_guc_upload(struct xe_guc *guc)
{
int ret;
guc_write_params(guc);
guc_prepare_xfer(guc);
/*
* Note that GuC needs the CSS header plus uKernel code to be copied
* by the DMA engine in one operation, whereas the RSA signature is
* loaded separately, either by copying it to the UOS_RSA_SCRATCH
* register (if key size <= 256) or through a ggtt-pinned vma (if key
* size > 256). The RSA size and therefore the way we provide it to the
* HW is fixed for each platform and hard-coded in the bootrom.
*/
ret = guc_xfer_rsa(guc);
if (ret)
goto out;
/*
* Current uCode expects the code to be loaded at 8k; locations below
* this are used for the stack.
*/
ret = xe_uc_fw_upload(&guc->fw, 0x2000, UOS_MOVE);
if (ret)
goto out;
/* Wait for authentication */
ret = guc_wait_ucode(guc);
if (ret)
goto out;
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_RUNNING);
return 0;
out:
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOAD_FAIL);
return 0 /* FIXME: ret, don't want to stop load currently */;
}
/**
* xe_guc_min_load_for_hwconfig - load minimal GuC and read hwconfig table
* @guc: The GuC object
*
* This function uploads a minimal GuC that does not support submissions but
* in a state where the hwconfig table can be read. Next, it reads and parses
* the hwconfig table so it can be used for subsequent steps in the driver load.
* Lastly, it enables CT communication (XXX: this is needed for PFs/VFs only).
*
* Return: 0 on success, negative error code on error.
*/
int xe_guc_min_load_for_hwconfig(struct xe_guc *guc)
{
int ret;
xe_guc_ads_populate_minimal(&guc->ads);
/* Raise GT freq to speed up HuC/GuC load */
xe_guc_pc_init_early(&guc->pc);
ret = __xe_guc_upload(guc);
if (ret)
return ret;
ret = xe_guc_hwconfig_init(guc);
if (ret)
return ret;
ret = xe_guc_enable_communication(guc);
if (ret)
return ret;
return 0;
}
int xe_guc_upload(struct xe_guc *guc)
{
xe_guc_ads_populate(&guc->ads);
return __xe_guc_upload(guc);
}
static void guc_handle_mmio_msg(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 msg;
if (IS_SRIOV_VF(guc_to_xe(guc)))
return;
xe_force_wake_assert_held(gt_to_fw(gt), XE_FW_GT);
msg = xe_mmio_read32(gt, SOFT_SCRATCH(15));
msg &= XE_GUC_RECV_MSG_EXCEPTION |
XE_GUC_RECV_MSG_CRASH_DUMP_POSTED;
xe_mmio_write32(gt, SOFT_SCRATCH(15), 0);
if (msg & XE_GUC_RECV_MSG_CRASH_DUMP_POSTED)
xe_gt_err(gt, "Received early GuC crash dump notification!\n");
if (msg & XE_GUC_RECV_MSG_EXCEPTION)
xe_gt_err(gt, "Received early GuC exception notification!\n");
}
static void guc_enable_irq(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 events = xe_gt_is_media_type(gt) ?
REG_FIELD_PREP(ENGINE0_MASK, GUC_INTR_GUC2HOST) :
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
/* Primary GuC and media GuC share a single enable bit */
xe_mmio_write32(gt, GUC_SG_INTR_ENABLE,
REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST));
/*
* There are separate mask bits for primary and media GuCs, so use
* a RMW operation to avoid clobbering the other GuC's setting.
*/
xe_mmio_rmw32(gt, GUC_SG_INTR_MASK, events, 0);
}
int xe_guc_enable_communication(struct xe_guc *guc)
{
struct xe_device *xe = guc_to_xe(guc);
int err;
if (IS_SRIOV_VF(xe) && xe_device_has_memirq(xe)) {
struct xe_gt *gt = guc_to_gt(guc);
struct xe_tile *tile = gt_to_tile(gt);
err = xe_memirq_init_guc(&tile->sriov.vf.memirq, guc);
if (err)
return err;
} else {
guc_enable_irq(guc);
}
xe_mmio_rmw32(guc_to_gt(guc), PMINTRMSK,
ARAT_EXPIRED_INTRMSK, 0);
err = xe_guc_ct_enable(&guc->ct);
if (err)
return err;
guc_handle_mmio_msg(guc);
return 0;
}
int xe_guc_suspend(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 action[] = {
XE_GUC_ACTION_CLIENT_SOFT_RESET,
};
int ret;
ret = xe_guc_mmio_send(guc, action, ARRAY_SIZE(action));
if (ret) {
xe_gt_err(gt, "GuC suspend failed: %pe\n", ERR_PTR(ret));
return ret;
}
xe_guc_sanitize(guc);
return 0;
}
void xe_guc_notify(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
const u32 default_notify_data = 0;
/*
* Both GUC_HOST_INTERRUPT and MED_GUC_HOST_INTERRUPT can pass
* additional payload data to the GuC but this capability is not
* used by the firmware yet. Use default value in the meantime.
*/
xe_mmio_write32(gt, guc->notify_reg, default_notify_data);
}
int xe_guc_auth_huc(struct xe_guc *guc, u32 rsa_addr)
{
u32 action[] = {
XE_GUC_ACTION_AUTHENTICATE_HUC,
rsa_addr
};
return xe_guc_ct_send_block(&guc->ct, action, ARRAY_SIZE(action));
}
int xe_guc_mmio_send_recv(struct xe_guc *guc, const u32 *request,
u32 len, u32 *response_buf)
{
struct xe_device *xe = guc_to_xe(guc);
struct xe_gt *gt = guc_to_gt(guc);
u32 header, reply;
struct xe_reg reply_reg = xe_gt_is_media_type(gt) ?
MED_VF_SW_FLAG(0) : VF_SW_FLAG(0);
const u32 LAST_INDEX = VF_SW_FLAG_COUNT - 1;
int ret;
int i;
BUILD_BUG_ON(VF_SW_FLAG_COUNT != MED_VF_SW_FLAG_COUNT);
xe_assert(xe, !xe_guc_ct_enabled(&guc->ct));
xe_assert(xe, len);
xe_assert(xe, len <= VF_SW_FLAG_COUNT);
xe_assert(xe, len <= MED_VF_SW_FLAG_COUNT);
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) ==
GUC_HXG_ORIGIN_HOST);
xe_assert(xe, FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) ==
GUC_HXG_TYPE_REQUEST);
retry:
/* Not in critical data-path, just do if else for GT type */
if (xe_gt_is_media_type(gt)) {
for (i = 0; i < len; ++i)
xe_mmio_write32(gt, MED_VF_SW_FLAG(i),
request[i]);
xe_mmio_read32(gt, MED_VF_SW_FLAG(LAST_INDEX));
} else {
for (i = 0; i < len; ++i)
xe_mmio_write32(gt, VF_SW_FLAG(i),
request[i]);
xe_mmio_read32(gt, VF_SW_FLAG(LAST_INDEX));
}
xe_guc_notify(guc);
ret = xe_mmio_wait32(gt, reply_reg, GUC_HXG_MSG_0_ORIGIN,
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_GUC),
50000, &reply, false);
if (ret) {
timeout:
xe_gt_err(gt, "GuC mmio request %#x: no reply %#x\n",
request[0], reply);
return ret;
}
header = xe_mmio_read32(gt, reply_reg);
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
/*
* Once we got a BUSY reply we must wait again for the final
* response but this time we can't use ORIGIN mask anymore.
* To spot a right change in the reply, we take advantage that
* response SUCCESS and FAILURE differ only by the single bit
* and all other bits are set and can be used as a new mask.
*/
u32 resp_bits = GUC_HXG_TYPE_RESPONSE_SUCCESS & GUC_HXG_TYPE_RESPONSE_FAILURE;
u32 resp_mask = FIELD_PREP(GUC_HXG_MSG_0_TYPE, resp_bits);
BUILD_BUG_ON(FIELD_MAX(GUC_HXG_MSG_0_TYPE) != GUC_HXG_TYPE_RESPONSE_SUCCESS);
BUILD_BUG_ON((GUC_HXG_TYPE_RESPONSE_SUCCESS ^ GUC_HXG_TYPE_RESPONSE_FAILURE) != 1);
ret = xe_mmio_wait32(gt, reply_reg, resp_mask, resp_mask,
1000000, &header, false);
if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
GUC_HXG_ORIGIN_GUC))
goto proto;
if (unlikely(ret)) {
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
GUC_HXG_TYPE_NO_RESPONSE_BUSY)
goto proto;
goto timeout;
}
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
xe_gt_dbg(gt, "GuC mmio request %#x: retrying, reason %#x\n",
request[0], reason);
goto retry;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) ==
GUC_HXG_TYPE_RESPONSE_FAILURE) {
u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
xe_gt_err(gt, "GuC mmio request %#x: failure %#x hint %#x\n",
request[0], error, hint);
return -ENXIO;
}
if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) !=
GUC_HXG_TYPE_RESPONSE_SUCCESS) {
proto:
xe_gt_err(gt, "GuC mmio request %#x: unexpected reply %#x\n",
request[0], header);
return -EPROTO;
}
/* Just copy entire possible message response */
if (response_buf) {
response_buf[0] = header;
for (i = 1; i < VF_SW_FLAG_COUNT; i++) {
reply_reg.addr += sizeof(u32);
response_buf[i] = xe_mmio_read32(gt, reply_reg);
}
}
/* Use data from the GuC response as our return value */
return FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
}
int xe_guc_mmio_send(struct xe_guc *guc, const u32 *request, u32 len)
{
return xe_guc_mmio_send_recv(guc, request, len, NULL);
}
static int guc_self_cfg(struct xe_guc *guc, u16 key, u16 len, u64 val)
{
struct xe_device *xe = guc_to_xe(guc);
u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION,
GUC_ACTION_HOST2GUC_SELF_CFG),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32,
lower_32_bits(val)),
FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64,
upper_32_bits(val)),
};
int ret;
xe_assert(xe, len <= 2);
xe_assert(xe, len != 1 || !upper_32_bits(val));
/* Self config must go over MMIO */
ret = xe_guc_mmio_send(guc, request, ARRAY_SIZE(request));
if (unlikely(ret < 0))
return ret;
if (unlikely(ret > 1))
return -EPROTO;
if (unlikely(!ret))
return -ENOKEY;
return 0;
}
int xe_guc_self_cfg32(struct xe_guc *guc, u16 key, u32 val)
{
return guc_self_cfg(guc, key, 1, val);
}
int xe_guc_self_cfg64(struct xe_guc *guc, u16 key, u64 val)
{
return guc_self_cfg(guc, key, 2, val);
}
void xe_guc_irq_handler(struct xe_guc *guc, const u16 iir)
{
if (iir & GUC_INTR_GUC2HOST)
xe_guc_ct_irq_handler(&guc->ct);
}
void xe_guc_sanitize(struct xe_guc *guc)
{
xe_uc_fw_change_status(&guc->fw, XE_UC_FIRMWARE_LOADABLE);
xe_guc_ct_disable(&guc->ct);
guc->submission_state.enabled = false;
}
int xe_guc_reset_prepare(struct xe_guc *guc)
{
return xe_guc_submit_reset_prepare(guc);
}
void xe_guc_reset_wait(struct xe_guc *guc)
{
xe_guc_submit_reset_wait(guc);
}
void xe_guc_stop_prepare(struct xe_guc *guc)
{
XE_WARN_ON(xe_guc_pc_stop(&guc->pc));
}
int xe_guc_stop(struct xe_guc *guc)
{
int ret;
xe_guc_ct_stop(&guc->ct);
ret = xe_guc_submit_stop(guc);
if (ret)
return ret;
return 0;
}
int xe_guc_start(struct xe_guc *guc)
{
int ret;
ret = xe_guc_pc_start(&guc->pc);
XE_WARN_ON(ret);
return xe_guc_submit_start(guc);
}
void xe_guc_print_info(struct xe_guc *guc, struct drm_printer *p)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 status;
int err;
int i;
xe_uc_fw_print(&guc->fw, p);
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return;
status = xe_mmio_read32(gt, GUC_STATUS);
drm_printf(p, "\nGuC status 0x%08x:\n", status);
drm_printf(p, "\tBootrom status = 0x%x\n",
REG_FIELD_GET(GS_BOOTROM_MASK, status));
drm_printf(p, "\tuKernel status = 0x%x\n",
REG_FIELD_GET(GS_UKERNEL_MASK, status));
drm_printf(p, "\tMIA Core status = 0x%x\n",
REG_FIELD_GET(GS_MIA_MASK, status));
drm_printf(p, "\tLog level = %d\n",
xe_guc_log_get_level(&guc->log));
drm_puts(p, "\nScratch registers:\n");
for (i = 0; i < SOFT_SCRATCH_COUNT; i++) {
drm_printf(p, "\t%2d: \t0x%x\n",
i, xe_mmio_read32(gt, SOFT_SCRATCH(i)));
}
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
xe_guc_ct_print(&guc->ct, p, false);
xe_guc_submit_print(guc, p);
}
/**
* xe_guc_in_reset() - Detect if GuC MIA is in reset.
* @guc: The GuC object
*
* This function detects runtime resume from d3cold by leveraging
* GUC_STATUS, GUC doesn't get reset during d3hot,
* it strictly to be called from RPM resume handler.
*
* Return: true if failed to get forcewake or GuC MIA is in Reset,
* otherwise false.
*/
bool xe_guc_in_reset(struct xe_guc *guc)
{
struct xe_gt *gt = guc_to_gt(guc);
u32 status;
int err;
err = xe_force_wake_get(gt_to_fw(gt), XE_FW_GT);
if (err)
return true;
status = xe_mmio_read32(gt, GUC_STATUS);
xe_force_wake_put(gt_to_fw(gt), XE_FW_GT);
return status & GS_MIA_IN_RESET;
}