Files
linux/drivers/net/wireless/mediatek/mt76/mt76.h
Felix Fietkau 5d581c3323 wifi: mt76: fix tx packet loss when scanning on DBDC
When queueing packets, only the MT76_RESET flag of the primary PHY
is checked. If the primary PHY is scanning or changing channels, this can
lead to packet loss for tx on the second PHY.
Fix this by passing the phy to the .tx_queue_skb op and using it to check
the correct flag.

Signed-off-by: Felix Fietkau <nbd@nbd.name>
2024-05-02 12:44:50 +02:00

1718 lines
43 KiB
C

/* SPDX-License-Identifier: ISC */
/*
* Copyright (C) 2016 Felix Fietkau <nbd@nbd.name>
*/
#ifndef __MT76_H
#define __MT76_H
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/skbuff.h>
#include <linux/leds.h>
#include <linux/usb.h>
#include <linux/average.h>
#include <linux/soc/mediatek/mtk_wed.h>
#include <net/mac80211.h>
#include <net/page_pool/helpers.h>
#include "util.h"
#include "testmode.h"
#define MT_MCU_RING_SIZE 32
#define MT_RX_BUF_SIZE 2048
#define MT_SKB_HEAD_LEN 256
#define MT_MAX_NON_AQL_PKT 16
#define MT_TXQ_FREE_THR 32
#define MT76_TOKEN_FREE_THR 64
#define MT_QFLAG_WED_RING GENMASK(1, 0)
#define MT_QFLAG_WED_TYPE GENMASK(4, 2)
#define MT_QFLAG_WED BIT(5)
#define MT_QFLAG_WED_RRO BIT(6)
#define MT_QFLAG_WED_RRO_EN BIT(7)
#define __MT_WED_Q(_type, _n) (MT_QFLAG_WED | \
FIELD_PREP(MT_QFLAG_WED_TYPE, _type) | \
FIELD_PREP(MT_QFLAG_WED_RING, _n))
#define __MT_WED_RRO_Q(_type, _n) (MT_QFLAG_WED_RRO | __MT_WED_Q(_type, _n))
#define MT_WED_Q_TX(_n) __MT_WED_Q(MT76_WED_Q_TX, _n)
#define MT_WED_Q_RX(_n) __MT_WED_Q(MT76_WED_Q_RX, _n)
#define MT_WED_Q_TXFREE __MT_WED_Q(MT76_WED_Q_TXFREE, 0)
#define MT_WED_RRO_Q_DATA(_n) __MT_WED_RRO_Q(MT76_WED_RRO_Q_DATA, _n)
#define MT_WED_RRO_Q_MSDU_PG(_n) __MT_WED_RRO_Q(MT76_WED_RRO_Q_MSDU_PG, _n)
#define MT_WED_RRO_Q_IND __MT_WED_RRO_Q(MT76_WED_RRO_Q_IND, 0)
struct mt76_dev;
struct mt76_phy;
struct mt76_wcid;
struct mt76s_intr;
struct mt76_reg_pair {
u32 reg;
u32 value;
};
enum mt76_bus_type {
MT76_BUS_MMIO,
MT76_BUS_USB,
MT76_BUS_SDIO,
};
enum mt76_wed_type {
MT76_WED_Q_TX,
MT76_WED_Q_TXFREE,
MT76_WED_Q_RX,
MT76_WED_RRO_Q_DATA,
MT76_WED_RRO_Q_MSDU_PG,
MT76_WED_RRO_Q_IND,
};
struct mt76_bus_ops {
u32 (*rr)(struct mt76_dev *dev, u32 offset);
void (*wr)(struct mt76_dev *dev, u32 offset, u32 val);
u32 (*rmw)(struct mt76_dev *dev, u32 offset, u32 mask, u32 val);
void (*write_copy)(struct mt76_dev *dev, u32 offset, const void *data,
int len);
void (*read_copy)(struct mt76_dev *dev, u32 offset, void *data,
int len);
int (*wr_rp)(struct mt76_dev *dev, u32 base,
const struct mt76_reg_pair *rp, int len);
int (*rd_rp)(struct mt76_dev *dev, u32 base,
struct mt76_reg_pair *rp, int len);
enum mt76_bus_type type;
};
#define mt76_is_usb(dev) ((dev)->bus->type == MT76_BUS_USB)
#define mt76_is_mmio(dev) ((dev)->bus->type == MT76_BUS_MMIO)
#define mt76_is_sdio(dev) ((dev)->bus->type == MT76_BUS_SDIO)
enum mt76_txq_id {
MT_TXQ_VO = IEEE80211_AC_VO,
MT_TXQ_VI = IEEE80211_AC_VI,
MT_TXQ_BE = IEEE80211_AC_BE,
MT_TXQ_BK = IEEE80211_AC_BK,
MT_TXQ_PSD,
MT_TXQ_BEACON,
MT_TXQ_CAB,
__MT_TXQ_MAX
};
enum mt76_mcuq_id {
MT_MCUQ_WM,
MT_MCUQ_WA,
MT_MCUQ_FWDL,
__MT_MCUQ_MAX
};
enum mt76_rxq_id {
MT_RXQ_MAIN,
MT_RXQ_MCU,
MT_RXQ_MCU_WA,
MT_RXQ_BAND1,
MT_RXQ_BAND1_WA,
MT_RXQ_MAIN_WA,
MT_RXQ_BAND2,
MT_RXQ_BAND2_WA,
MT_RXQ_RRO_BAND0,
MT_RXQ_RRO_BAND1,
MT_RXQ_RRO_BAND2,
MT_RXQ_MSDU_PAGE_BAND0,
MT_RXQ_MSDU_PAGE_BAND1,
MT_RXQ_MSDU_PAGE_BAND2,
MT_RXQ_TXFREE_BAND0,
MT_RXQ_TXFREE_BAND1,
MT_RXQ_TXFREE_BAND2,
MT_RXQ_RRO_IND,
__MT_RXQ_MAX
};
enum mt76_band_id {
MT_BAND0,
MT_BAND1,
MT_BAND2,
__MT_MAX_BAND
};
enum mt76_cipher_type {
MT_CIPHER_NONE,
MT_CIPHER_WEP40,
MT_CIPHER_TKIP,
MT_CIPHER_TKIP_NO_MIC,
MT_CIPHER_AES_CCMP,
MT_CIPHER_WEP104,
MT_CIPHER_BIP_CMAC_128,
MT_CIPHER_WEP128,
MT_CIPHER_WAPI,
MT_CIPHER_CCMP_CCX,
MT_CIPHER_CCMP_256,
MT_CIPHER_GCMP,
MT_CIPHER_GCMP_256,
};
enum mt76_dfs_state {
MT_DFS_STATE_UNKNOWN,
MT_DFS_STATE_DISABLED,
MT_DFS_STATE_CAC,
MT_DFS_STATE_ACTIVE,
};
struct mt76_queue_buf {
dma_addr_t addr;
u16 len;
bool skip_unmap;
};
struct mt76_tx_info {
struct mt76_queue_buf buf[32];
struct sk_buff *skb;
int nbuf;
u32 info;
};
struct mt76_queue_entry {
union {
void *buf;
struct sk_buff *skb;
};
union {
struct mt76_txwi_cache *txwi;
struct urb *urb;
int buf_sz;
};
dma_addr_t dma_addr[2];
u16 dma_len[2];
u16 wcid;
bool skip_buf0:1;
bool skip_buf1:1;
bool done:1;
};
struct mt76_queue_regs {
u32 desc_base;
u32 ring_size;
u32 cpu_idx;
u32 dma_idx;
} __packed __aligned(4);
struct mt76_queue {
struct mt76_queue_regs __iomem *regs;
spinlock_t lock;
spinlock_t cleanup_lock;
struct mt76_queue_entry *entry;
struct mt76_rro_desc *rro_desc;
struct mt76_desc *desc;
u16 first;
u16 head;
u16 tail;
u8 hw_idx;
u8 ep;
int ndesc;
int queued;
int buf_size;
bool stopped;
bool blocked;
u8 buf_offset;
u16 flags;
struct mtk_wed_device *wed;
u32 wed_regs;
dma_addr_t desc_dma;
struct sk_buff *rx_head;
struct page_pool *page_pool;
};
struct mt76_mcu_ops {
u32 headroom;
u32 tailroom;
int (*mcu_send_msg)(struct mt76_dev *dev, int cmd, const void *data,
int len, bool wait_resp);
int (*mcu_skb_send_msg)(struct mt76_dev *dev, struct sk_buff *skb,
int cmd, int *seq);
int (*mcu_parse_response)(struct mt76_dev *dev, int cmd,
struct sk_buff *skb, int seq);
u32 (*mcu_rr)(struct mt76_dev *dev, u32 offset);
void (*mcu_wr)(struct mt76_dev *dev, u32 offset, u32 val);
int (*mcu_wr_rp)(struct mt76_dev *dev, u32 base,
const struct mt76_reg_pair *rp, int len);
int (*mcu_rd_rp)(struct mt76_dev *dev, u32 base,
struct mt76_reg_pair *rp, int len);
int (*mcu_restart)(struct mt76_dev *dev);
};
struct mt76_queue_ops {
int (*init)(struct mt76_dev *dev,
int (*poll)(struct napi_struct *napi, int budget));
int (*alloc)(struct mt76_dev *dev, struct mt76_queue *q,
int idx, int n_desc, int bufsize,
u32 ring_base);
int (*tx_queue_skb)(struct mt76_phy *phy, struct mt76_queue *q,
enum mt76_txq_id qid, struct sk_buff *skb,
struct mt76_wcid *wcid, struct ieee80211_sta *sta);
int (*tx_queue_skb_raw)(struct mt76_dev *dev, struct mt76_queue *q,
struct sk_buff *skb, u32 tx_info);
void *(*dequeue)(struct mt76_dev *dev, struct mt76_queue *q, bool flush,
int *len, u32 *info, bool *more);
void (*rx_reset)(struct mt76_dev *dev, enum mt76_rxq_id qid);
void (*tx_cleanup)(struct mt76_dev *dev, struct mt76_queue *q,
bool flush);
void (*rx_cleanup)(struct mt76_dev *dev, struct mt76_queue *q);
void (*kick)(struct mt76_dev *dev, struct mt76_queue *q);
void (*reset_q)(struct mt76_dev *dev, struct mt76_queue *q);
};
enum mt76_phy_type {
MT_PHY_TYPE_CCK,
MT_PHY_TYPE_OFDM,
MT_PHY_TYPE_HT,
MT_PHY_TYPE_HT_GF,
MT_PHY_TYPE_VHT,
MT_PHY_TYPE_HE_SU = 8,
MT_PHY_TYPE_HE_EXT_SU,
MT_PHY_TYPE_HE_TB,
MT_PHY_TYPE_HE_MU,
MT_PHY_TYPE_EHT_SU = 13,
MT_PHY_TYPE_EHT_TRIG,
MT_PHY_TYPE_EHT_MU,
__MT_PHY_TYPE_MAX,
};
struct mt76_sta_stats {
u64 tx_mode[__MT_PHY_TYPE_MAX];
u64 tx_bw[5]; /* 20, 40, 80, 160, 320 */
u64 tx_nss[4]; /* 1, 2, 3, 4 */
u64 tx_mcs[16]; /* mcs idx */
u64 tx_bytes;
/* WED TX */
u32 tx_packets; /* unit: MSDU */
u32 tx_retries;
u32 tx_failed;
/* WED RX */
u64 rx_bytes;
u32 rx_packets;
u32 rx_errors;
u32 rx_drops;
};
enum mt76_wcid_flags {
MT_WCID_FLAG_CHECK_PS,
MT_WCID_FLAG_PS,
MT_WCID_FLAG_4ADDR,
MT_WCID_FLAG_HDR_TRANS,
};
#define MT76_N_WCIDS 1088
/* stored in ieee80211_tx_info::hw_queue */
#define MT_TX_HW_QUEUE_PHY GENMASK(3, 2)
DECLARE_EWMA(signal, 10, 8);
#define MT_WCID_TX_INFO_RATE GENMASK(15, 0)
#define MT_WCID_TX_INFO_NSS GENMASK(17, 16)
#define MT_WCID_TX_INFO_TXPWR_ADJ GENMASK(25, 18)
#define MT_WCID_TX_INFO_SET BIT(31)
struct mt76_wcid {
struct mt76_rx_tid __rcu *aggr[IEEE80211_NUM_TIDS];
atomic_t non_aql_packets;
unsigned long flags;
struct ewma_signal rssi;
int inactive_count;
struct rate_info rate;
unsigned long ampdu_state;
u16 idx;
u8 hw_key_idx;
u8 hw_key_idx2;
u8 sta:1;
u8 amsdu:1;
u8 phy_idx:2;
u8 rx_check_pn;
u8 rx_key_pn[IEEE80211_NUM_TIDS + 1][6];
u16 cipher;
u32 tx_info;
bool sw_iv;
struct list_head tx_list;
struct sk_buff_head tx_pending;
struct list_head list;
struct idr pktid;
struct mt76_sta_stats stats;
struct list_head poll_list;
};
struct mt76_txq {
u16 wcid;
u16 agg_ssn;
bool send_bar;
bool aggr;
};
struct mt76_wed_rro_ind {
u32 se_id : 12;
u32 rsv : 4;
u32 start_sn : 12;
u32 ind_reason : 4;
u32 ind_cnt : 13;
u32 win_sz : 3;
u32 rsv2 : 13;
u32 magic_cnt : 3;
};
struct mt76_txwi_cache {
struct list_head list;
dma_addr_t dma_addr;
union {
struct sk_buff *skb;
void *ptr;
};
};
struct mt76_rx_tid {
struct rcu_head rcu_head;
struct mt76_dev *dev;
spinlock_t lock;
struct delayed_work reorder_work;
u16 id;
u16 head;
u16 size;
u16 nframes;
u8 num;
u8 started:1, stopped:1, timer_pending:1;
struct sk_buff *reorder_buf[] __counted_by(size);
};
#define MT_TX_CB_DMA_DONE BIT(0)
#define MT_TX_CB_TXS_DONE BIT(1)
#define MT_TX_CB_TXS_FAILED BIT(2)
#define MT_PACKET_ID_MASK GENMASK(6, 0)
#define MT_PACKET_ID_NO_ACK 0
#define MT_PACKET_ID_NO_SKB 1
#define MT_PACKET_ID_WED 2
#define MT_PACKET_ID_FIRST 3
#define MT_PACKET_ID_HAS_RATE BIT(7)
/* This is timer for when to give up when waiting for TXS callback,
* with starting time being the time at which the DMA_DONE callback
* was seen (so, we know packet was processed then, it should not take
* long after that for firmware to send the TXS callback if it is going
* to do so.)
*/
#define MT_TX_STATUS_SKB_TIMEOUT (HZ / 4)
struct mt76_tx_cb {
unsigned long jiffies;
u16 wcid;
u8 pktid;
u8 flags;
};
enum {
MT76_STATE_INITIALIZED,
MT76_STATE_REGISTERED,
MT76_STATE_RUNNING,
MT76_STATE_MCU_RUNNING,
MT76_SCANNING,
MT76_HW_SCANNING,
MT76_HW_SCHED_SCANNING,
MT76_RESTART,
MT76_RESET,
MT76_MCU_RESET,
MT76_REMOVED,
MT76_READING_STATS,
MT76_STATE_POWER_OFF,
MT76_STATE_SUSPEND,
MT76_STATE_ROC,
MT76_STATE_PM,
MT76_STATE_WED_RESET,
};
struct mt76_hw_cap {
bool has_2ghz;
bool has_5ghz;
bool has_6ghz;
};
#define MT_DRV_TXWI_NO_FREE BIT(0)
#define MT_DRV_TX_ALIGNED4_SKBS BIT(1)
#define MT_DRV_SW_RX_AIRTIME BIT(2)
#define MT_DRV_RX_DMA_HDR BIT(3)
#define MT_DRV_HW_MGMT_TXQ BIT(4)
#define MT_DRV_AMSDU_OFFLOAD BIT(5)
struct mt76_driver_ops {
u32 drv_flags;
u32 survey_flags;
u16 txwi_size;
u16 token_size;
u8 mcs_rates;
void (*update_survey)(struct mt76_phy *phy);
int (*tx_prepare_skb)(struct mt76_dev *dev, void *txwi_ptr,
enum mt76_txq_id qid, struct mt76_wcid *wcid,
struct ieee80211_sta *sta,
struct mt76_tx_info *tx_info);
void (*tx_complete_skb)(struct mt76_dev *dev,
struct mt76_queue_entry *e);
bool (*tx_status_data)(struct mt76_dev *dev, u8 *update);
bool (*rx_check)(struct mt76_dev *dev, void *data, int len);
void (*rx_skb)(struct mt76_dev *dev, enum mt76_rxq_id q,
struct sk_buff *skb, u32 *info);
void (*rx_poll_complete)(struct mt76_dev *dev, enum mt76_rxq_id q);
void (*sta_ps)(struct mt76_dev *dev, struct ieee80211_sta *sta,
bool ps);
int (*sta_add)(struct mt76_dev *dev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void (*sta_assoc)(struct mt76_dev *dev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void (*sta_remove)(struct mt76_dev *dev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
};
struct mt76_channel_state {
u64 cc_active;
u64 cc_busy;
u64 cc_rx;
u64 cc_bss_rx;
u64 cc_tx;
s8 noise;
};
struct mt76_sband {
struct ieee80211_supported_band sband;
struct mt76_channel_state *chan;
};
/* addr req mask */
#define MT_VEND_TYPE_EEPROM BIT(31)
#define MT_VEND_TYPE_CFG BIT(30)
#define MT_VEND_TYPE_MASK (MT_VEND_TYPE_EEPROM | MT_VEND_TYPE_CFG)
#define MT_VEND_ADDR(type, n) (MT_VEND_TYPE_##type | (n))
enum mt_vendor_req {
MT_VEND_DEV_MODE = 0x1,
MT_VEND_WRITE = 0x2,
MT_VEND_POWER_ON = 0x4,
MT_VEND_MULTI_WRITE = 0x6,
MT_VEND_MULTI_READ = 0x7,
MT_VEND_READ_EEPROM = 0x9,
MT_VEND_WRITE_FCE = 0x42,
MT_VEND_WRITE_CFG = 0x46,
MT_VEND_READ_CFG = 0x47,
MT_VEND_READ_EXT = 0x63,
MT_VEND_WRITE_EXT = 0x66,
MT_VEND_FEATURE_SET = 0x91,
};
enum mt76u_in_ep {
MT_EP_IN_PKT_RX,
MT_EP_IN_CMD_RESP,
__MT_EP_IN_MAX,
};
enum mt76u_out_ep {
MT_EP_OUT_INBAND_CMD,
MT_EP_OUT_AC_BE,
MT_EP_OUT_AC_BK,
MT_EP_OUT_AC_VI,
MT_EP_OUT_AC_VO,
MT_EP_OUT_HCCA,
__MT_EP_OUT_MAX,
};
struct mt76_mcu {
struct mutex mutex;
u32 msg_seq;
int timeout;
struct sk_buff_head res_q;
wait_queue_head_t wait;
};
#define MT_TX_SG_MAX_SIZE 8
#define MT_RX_SG_MAX_SIZE 4
#define MT_NUM_TX_ENTRIES 256
#define MT_NUM_RX_ENTRIES 128
#define MCU_RESP_URB_SIZE 1024
struct mt76_usb {
struct mutex usb_ctrl_mtx;
u8 *data;
u16 data_len;
struct mt76_worker status_worker;
struct mt76_worker rx_worker;
struct work_struct stat_work;
u8 out_ep[__MT_EP_OUT_MAX];
u8 in_ep[__MT_EP_IN_MAX];
bool sg_en;
struct mt76u_mcu {
u8 *data;
/* multiple reads */
struct mt76_reg_pair *rp;
int rp_len;
u32 base;
} mcu;
};
#define MT76S_XMIT_BUF_SZ 0x3fe00
#define MT76S_NUM_TX_ENTRIES 256
#define MT76S_NUM_RX_ENTRIES 512
struct mt76_sdio {
struct mt76_worker txrx_worker;
struct mt76_worker status_worker;
struct mt76_worker net_worker;
struct mt76_worker stat_worker;
u8 *xmit_buf;
u32 xmit_buf_sz;
struct sdio_func *func;
void *intr_data;
u8 hw_ver;
wait_queue_head_t wait;
struct {
int pse_data_quota;
int ple_data_quota;
int pse_mcu_quota;
int pse_page_size;
int deficit;
} sched;
int (*parse_irq)(struct mt76_dev *dev, struct mt76s_intr *intr);
};
struct mt76_mmio {
void __iomem *regs;
spinlock_t irq_lock;
u32 irqmask;
struct mtk_wed_device wed;
struct mtk_wed_device wed_hif2;
struct completion wed_reset;
struct completion wed_reset_complete;
};
struct mt76_rx_status {
union {
struct mt76_wcid *wcid;
u16 wcid_idx;
};
u32 reorder_time;
u32 ampdu_ref;
u32 timestamp;
u8 iv[6];
u8 phy_idx:2;
u8 aggr:1;
u8 qos_ctl;
u16 seqno;
u16 freq;
u32 flag;
u8 enc_flags;
u8 encoding:3, bw:4;
union {
struct {
u8 he_ru:3;
u8 he_gi:2;
u8 he_dcm:1;
};
struct {
u8 ru:4;
u8 gi:2;
} eht;
};
u8 amsdu:1, first_amsdu:1, last_amsdu:1;
u8 rate_idx;
u8 nss:5, band:3;
s8 signal;
u8 chains;
s8 chain_signal[IEEE80211_MAX_CHAINS];
};
struct mt76_freq_range_power {
const struct cfg80211_sar_freq_ranges *range;
s8 power;
};
struct mt76_testmode_ops {
int (*set_state)(struct mt76_phy *phy, enum mt76_testmode_state state);
int (*set_params)(struct mt76_phy *phy, struct nlattr **tb,
enum mt76_testmode_state new_state);
int (*dump_stats)(struct mt76_phy *phy, struct sk_buff *msg);
};
struct mt76_testmode_data {
enum mt76_testmode_state state;
u32 param_set[DIV_ROUND_UP(NUM_MT76_TM_ATTRS, 32)];
struct sk_buff *tx_skb;
u32 tx_count;
u16 tx_mpdu_len;
u8 tx_rate_mode;
u8 tx_rate_idx;
u8 tx_rate_nss;
u8 tx_rate_sgi;
u8 tx_rate_ldpc;
u8 tx_rate_stbc;
u8 tx_ltf;
u8 tx_antenna_mask;
u8 tx_spe_idx;
u8 tx_duty_cycle;
u32 tx_time;
u32 tx_ipg;
u32 freq_offset;
u8 tx_power[4];
u8 tx_power_control;
u8 addr[3][ETH_ALEN];
u32 tx_pending;
u32 tx_queued;
u16 tx_queued_limit;
u32 tx_done;
struct {
u64 packets[__MT_RXQ_MAX];
u64 fcs_error[__MT_RXQ_MAX];
} rx_stats;
};
struct mt76_vif {
u8 idx;
u8 omac_idx;
u8 band_idx;
u8 wmm_idx;
u8 scan_seq_num;
u8 cipher;
u8 basic_rates_idx;
u8 mcast_rates_idx;
u8 beacon_rates_idx;
struct ieee80211_chanctx_conf *ctx;
};
struct mt76_phy {
struct ieee80211_hw *hw;
struct mt76_dev *dev;
void *priv;
unsigned long state;
u8 band_idx;
spinlock_t tx_lock;
struct list_head tx_list;
struct mt76_queue *q_tx[__MT_TXQ_MAX];
struct cfg80211_chan_def chandef;
struct ieee80211_channel *main_chan;
struct mt76_channel_state *chan_state;
enum mt76_dfs_state dfs_state;
ktime_t survey_time;
u32 aggr_stats[32];
struct mt76_hw_cap cap;
struct mt76_sband sband_2g;
struct mt76_sband sband_5g;
struct mt76_sband sband_6g;
u8 macaddr[ETH_ALEN];
int txpower_cur;
u8 antenna_mask;
u16 chainmask;
#ifdef CONFIG_NL80211_TESTMODE
struct mt76_testmode_data test;
#endif
struct delayed_work mac_work;
u8 mac_work_count;
struct {
struct sk_buff *head;
struct sk_buff **tail;
u16 seqno;
} rx_amsdu[__MT_RXQ_MAX];
struct mt76_freq_range_power *frp;
struct {
struct led_classdev cdev;
char name[32];
bool al;
u8 pin;
} leds;
};
struct mt76_dev {
struct mt76_phy phy; /* must be first */
struct mt76_phy *phys[__MT_MAX_BAND];
struct ieee80211_hw *hw;
spinlock_t wed_lock;
spinlock_t lock;
spinlock_t cc_lock;
u32 cur_cc_bss_rx;
struct mt76_rx_status rx_ampdu_status;
u32 rx_ampdu_len;
u32 rx_ampdu_ref;
struct mutex mutex;
const struct mt76_bus_ops *bus;
const struct mt76_driver_ops *drv;
const struct mt76_mcu_ops *mcu_ops;
struct device *dev;
struct device *dma_dev;
struct mt76_mcu mcu;
struct net_device napi_dev;
struct net_device tx_napi_dev;
spinlock_t rx_lock;
struct napi_struct napi[__MT_RXQ_MAX];
struct sk_buff_head rx_skb[__MT_RXQ_MAX];
struct tasklet_struct irq_tasklet;
struct list_head txwi_cache;
struct list_head rxwi_cache;
struct mt76_queue *q_mcu[__MT_MCUQ_MAX];
struct mt76_queue q_rx[__MT_RXQ_MAX];
const struct mt76_queue_ops *queue_ops;
int tx_dma_idx[4];
struct mt76_worker tx_worker;
struct napi_struct tx_napi;
spinlock_t token_lock;
struct idr token;
u16 wed_token_count;
u16 token_count;
u16 token_size;
spinlock_t rx_token_lock;
struct idr rx_token;
u16 rx_token_size;
wait_queue_head_t tx_wait;
/* spinclock used to protect wcid pktid linked list */
spinlock_t status_lock;
u32 wcid_mask[DIV_ROUND_UP(MT76_N_WCIDS, 32)];
u32 wcid_phy_mask[DIV_ROUND_UP(MT76_N_WCIDS, 32)];
u64 vif_mask;
struct mt76_wcid global_wcid;
struct mt76_wcid __rcu *wcid[MT76_N_WCIDS];
struct list_head wcid_list;
struct list_head sta_poll_list;
spinlock_t sta_poll_lock;
u32 rev;
struct tasklet_struct pre_tbtt_tasklet;
int beacon_int;
u8 beacon_mask;
struct debugfs_blob_wrapper eeprom;
struct debugfs_blob_wrapper otp;
char alpha2[3];
enum nl80211_dfs_regions region;
u32 debugfs_reg;
u8 csa_complete;
u32 rxfilter;
#ifdef CONFIG_NL80211_TESTMODE
const struct mt76_testmode_ops *test_ops;
struct {
const char *name;
u32 offset;
} test_mtd;
#endif
struct workqueue_struct *wq;
union {
struct mt76_mmio mmio;
struct mt76_usb usb;
struct mt76_sdio sdio;
};
};
/* per-phy stats. */
struct mt76_mib_stats {
u32 ack_fail_cnt;
u32 fcs_err_cnt;
u32 rts_cnt;
u32 rts_retries_cnt;
u32 ba_miss_cnt;
u32 tx_bf_cnt;
u32 tx_mu_bf_cnt;
u32 tx_mu_mpdu_cnt;
u32 tx_mu_acked_mpdu_cnt;
u32 tx_su_acked_mpdu_cnt;
u32 tx_bf_ibf_ppdu_cnt;
u32 tx_bf_ebf_ppdu_cnt;
u32 tx_bf_rx_fb_all_cnt;
u32 tx_bf_rx_fb_eht_cnt;
u32 tx_bf_rx_fb_he_cnt;
u32 tx_bf_rx_fb_vht_cnt;
u32 tx_bf_rx_fb_ht_cnt;
u32 tx_bf_rx_fb_bw; /* value of last sample, not cumulative */
u32 tx_bf_rx_fb_nc_cnt;
u32 tx_bf_rx_fb_nr_cnt;
u32 tx_bf_fb_cpl_cnt;
u32 tx_bf_fb_trig_cnt;
u32 tx_ampdu_cnt;
u32 tx_stop_q_empty_cnt;
u32 tx_mpdu_attempts_cnt;
u32 tx_mpdu_success_cnt;
u32 tx_pkt_ebf_cnt;
u32 tx_pkt_ibf_cnt;
u32 tx_rwp_fail_cnt;
u32 tx_rwp_need_cnt;
/* rx stats */
u32 rx_fifo_full_cnt;
u32 channel_idle_cnt;
u32 primary_cca_busy_time;
u32 secondary_cca_busy_time;
u32 primary_energy_detect_time;
u32 cck_mdrdy_time;
u32 ofdm_mdrdy_time;
u32 green_mdrdy_time;
u32 rx_vector_mismatch_cnt;
u32 rx_delimiter_fail_cnt;
u32 rx_mrdy_cnt;
u32 rx_len_mismatch_cnt;
u32 rx_mpdu_cnt;
u32 rx_ampdu_cnt;
u32 rx_ampdu_bytes_cnt;
u32 rx_ampdu_valid_subframe_cnt;
u32 rx_ampdu_valid_subframe_bytes_cnt;
u32 rx_pfdrop_cnt;
u32 rx_vec_queue_overflow_drop_cnt;
u32 rx_ba_cnt;
u32 tx_amsdu[8];
u32 tx_amsdu_cnt;
/* mcu_muru_stats */
u32 dl_cck_cnt;
u32 dl_ofdm_cnt;
u32 dl_htmix_cnt;
u32 dl_htgf_cnt;
u32 dl_vht_su_cnt;
u32 dl_vht_2mu_cnt;
u32 dl_vht_3mu_cnt;
u32 dl_vht_4mu_cnt;
u32 dl_he_su_cnt;
u32 dl_he_ext_su_cnt;
u32 dl_he_2ru_cnt;
u32 dl_he_2mu_cnt;
u32 dl_he_3ru_cnt;
u32 dl_he_3mu_cnt;
u32 dl_he_4ru_cnt;
u32 dl_he_4mu_cnt;
u32 dl_he_5to8ru_cnt;
u32 dl_he_9to16ru_cnt;
u32 dl_he_gtr16ru_cnt;
u32 ul_hetrig_su_cnt;
u32 ul_hetrig_2ru_cnt;
u32 ul_hetrig_3ru_cnt;
u32 ul_hetrig_4ru_cnt;
u32 ul_hetrig_5to8ru_cnt;
u32 ul_hetrig_9to16ru_cnt;
u32 ul_hetrig_gtr16ru_cnt;
u32 ul_hetrig_2mu_cnt;
u32 ul_hetrig_3mu_cnt;
u32 ul_hetrig_4mu_cnt;
};
struct mt76_power_limits {
s8 cck[4];
s8 ofdm[8];
s8 mcs[4][10];
s8 ru[7][12];
s8 eht[16][16];
};
struct mt76_ethtool_worker_info {
u64 *data;
int idx;
int initial_stat_idx;
int worker_stat_count;
int sta_count;
};
#define CCK_RATE(_idx, _rate) { \
.bitrate = _rate, \
.flags = IEEE80211_RATE_SHORT_PREAMBLE, \
.hw_value = (MT_PHY_TYPE_CCK << 8) | (_idx), \
.hw_value_short = (MT_PHY_TYPE_CCK << 8) | (4 + _idx), \
}
#define OFDM_RATE(_idx, _rate) { \
.bitrate = _rate, \
.hw_value = (MT_PHY_TYPE_OFDM << 8) | (_idx), \
.hw_value_short = (MT_PHY_TYPE_OFDM << 8) | (_idx), \
}
extern struct ieee80211_rate mt76_rates[12];
#define __mt76_rr(dev, ...) (dev)->bus->rr((dev), __VA_ARGS__)
#define __mt76_wr(dev, ...) (dev)->bus->wr((dev), __VA_ARGS__)
#define __mt76_rmw(dev, ...) (dev)->bus->rmw((dev), __VA_ARGS__)
#define __mt76_wr_copy(dev, ...) (dev)->bus->write_copy((dev), __VA_ARGS__)
#define __mt76_rr_copy(dev, ...) (dev)->bus->read_copy((dev), __VA_ARGS__)
#define __mt76_set(dev, offset, val) __mt76_rmw(dev, offset, 0, val)
#define __mt76_clear(dev, offset, val) __mt76_rmw(dev, offset, val, 0)
#define mt76_rr(dev, ...) (dev)->mt76.bus->rr(&((dev)->mt76), __VA_ARGS__)
#define mt76_wr(dev, ...) (dev)->mt76.bus->wr(&((dev)->mt76), __VA_ARGS__)
#define mt76_rmw(dev, ...) (dev)->mt76.bus->rmw(&((dev)->mt76), __VA_ARGS__)
#define mt76_wr_copy(dev, ...) (dev)->mt76.bus->write_copy(&((dev)->mt76), __VA_ARGS__)
#define mt76_rr_copy(dev, ...) (dev)->mt76.bus->read_copy(&((dev)->mt76), __VA_ARGS__)
#define mt76_wr_rp(dev, ...) (dev)->mt76.bus->wr_rp(&((dev)->mt76), __VA_ARGS__)
#define mt76_rd_rp(dev, ...) (dev)->mt76.bus->rd_rp(&((dev)->mt76), __VA_ARGS__)
#define mt76_mcu_restart(dev, ...) (dev)->mt76.mcu_ops->mcu_restart(&((dev)->mt76))
#define mt76_set(dev, offset, val) mt76_rmw(dev, offset, 0, val)
#define mt76_clear(dev, offset, val) mt76_rmw(dev, offset, val, 0)
#define mt76_get_field(_dev, _reg, _field) \
FIELD_GET(_field, mt76_rr(dev, _reg))
#define mt76_rmw_field(_dev, _reg, _field, _val) \
mt76_rmw(_dev, _reg, _field, FIELD_PREP(_field, _val))
#define __mt76_rmw_field(_dev, _reg, _field, _val) \
__mt76_rmw(_dev, _reg, _field, FIELD_PREP(_field, _val))
#define mt76_hw(dev) (dev)->mphy.hw
bool __mt76_poll(struct mt76_dev *dev, u32 offset, u32 mask, u32 val,
int timeout);
#define mt76_poll(dev, ...) __mt76_poll(&((dev)->mt76), __VA_ARGS__)
bool ____mt76_poll_msec(struct mt76_dev *dev, u32 offset, u32 mask, u32 val,
int timeout, int kick);
#define __mt76_poll_msec(...) ____mt76_poll_msec(__VA_ARGS__, 10)
#define mt76_poll_msec(dev, ...) ____mt76_poll_msec(&((dev)->mt76), __VA_ARGS__, 10)
#define mt76_poll_msec_tick(dev, ...) ____mt76_poll_msec(&((dev)->mt76), __VA_ARGS__)
void mt76_mmio_init(struct mt76_dev *dev, void __iomem *regs);
void mt76_pci_disable_aspm(struct pci_dev *pdev);
static inline u16 mt76_chip(struct mt76_dev *dev)
{
return dev->rev >> 16;
}
static inline u16 mt76_rev(struct mt76_dev *dev)
{
return dev->rev & 0xffff;
}
void mt76_wed_release_rx_buf(struct mtk_wed_device *wed);
void mt76_wed_offload_disable(struct mtk_wed_device *wed);
void mt76_wed_reset_complete(struct mtk_wed_device *wed);
void mt76_wed_dma_reset(struct mt76_dev *dev);
int mt76_wed_net_setup_tc(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct net_device *netdev, enum tc_setup_type type,
void *type_data);
#ifdef CONFIG_NET_MEDIATEK_SOC_WED
u32 mt76_wed_init_rx_buf(struct mtk_wed_device *wed, int size);
int mt76_wed_offload_enable(struct mtk_wed_device *wed);
int mt76_wed_dma_setup(struct mt76_dev *dev, struct mt76_queue *q, bool reset);
#else
static inline u32 mt76_wed_init_rx_buf(struct mtk_wed_device *wed, int size)
{
return 0;
}
static inline int mt76_wed_offload_enable(struct mtk_wed_device *wed)
{
return 0;
}
static inline int mt76_wed_dma_setup(struct mt76_dev *dev, struct mt76_queue *q,
bool reset)
{
return 0;
}
#endif /* CONFIG_NET_MEDIATEK_SOC_WED */
#define mt76xx_chip(dev) mt76_chip(&((dev)->mt76))
#define mt76xx_rev(dev) mt76_rev(&((dev)->mt76))
#define mt76_init_queues(dev, ...) (dev)->mt76.queue_ops->init(&((dev)->mt76), __VA_ARGS__)
#define mt76_queue_alloc(dev, ...) (dev)->mt76.queue_ops->alloc(&((dev)->mt76), __VA_ARGS__)
#define mt76_tx_queue_skb_raw(dev, ...) (dev)->mt76.queue_ops->tx_queue_skb_raw(&((dev)->mt76), __VA_ARGS__)
#define mt76_tx_queue_skb(dev, ...) (dev)->mt76.queue_ops->tx_queue_skb(&((dev)->mphy), __VA_ARGS__)
#define mt76_queue_rx_reset(dev, ...) (dev)->mt76.queue_ops->rx_reset(&((dev)->mt76), __VA_ARGS__)
#define mt76_queue_tx_cleanup(dev, ...) (dev)->mt76.queue_ops->tx_cleanup(&((dev)->mt76), __VA_ARGS__)
#define mt76_queue_rx_cleanup(dev, ...) (dev)->mt76.queue_ops->rx_cleanup(&((dev)->mt76), __VA_ARGS__)
#define mt76_queue_kick(dev, ...) (dev)->mt76.queue_ops->kick(&((dev)->mt76), __VA_ARGS__)
#define mt76_queue_reset(dev, ...) (dev)->mt76.queue_ops->reset_q(&((dev)->mt76), __VA_ARGS__)
#define mt76_for_each_q_rx(dev, i) \
for (i = 0; i < ARRAY_SIZE((dev)->q_rx); i++) \
if ((dev)->q_rx[i].ndesc)
struct mt76_dev *mt76_alloc_device(struct device *pdev, unsigned int size,
const struct ieee80211_ops *ops,
const struct mt76_driver_ops *drv_ops);
int mt76_register_device(struct mt76_dev *dev, bool vht,
struct ieee80211_rate *rates, int n_rates);
void mt76_unregister_device(struct mt76_dev *dev);
void mt76_free_device(struct mt76_dev *dev);
void mt76_unregister_phy(struct mt76_phy *phy);
struct mt76_phy *mt76_alloc_phy(struct mt76_dev *dev, unsigned int size,
const struct ieee80211_ops *ops,
u8 band_idx);
int mt76_register_phy(struct mt76_phy *phy, bool vht,
struct ieee80211_rate *rates, int n_rates);
struct dentry *mt76_register_debugfs_fops(struct mt76_phy *phy,
const struct file_operations *ops);
static inline struct dentry *mt76_register_debugfs(struct mt76_dev *dev)
{
return mt76_register_debugfs_fops(&dev->phy, NULL);
}
int mt76_queues_read(struct seq_file *s, void *data);
void mt76_seq_puts_array(struct seq_file *file, const char *str,
s8 *val, int len);
int mt76_eeprom_init(struct mt76_dev *dev, int len);
void mt76_eeprom_override(struct mt76_phy *phy);
int mt76_get_of_data_from_mtd(struct mt76_dev *dev, void *eep, int offset, int len);
int mt76_get_of_data_from_nvmem(struct mt76_dev *dev, void *eep,
const char *cell_name, int len);
struct mt76_queue *
mt76_init_queue(struct mt76_dev *dev, int qid, int idx, int n_desc,
int ring_base, void *wed, u32 flags);
u16 mt76_calculate_default_rate(struct mt76_phy *phy,
struct ieee80211_vif *vif, int rateidx);
static inline int mt76_init_tx_queue(struct mt76_phy *phy, int qid, int idx,
int n_desc, int ring_base, void *wed,
u32 flags)
{
struct mt76_queue *q;
q = mt76_init_queue(phy->dev, qid, idx, n_desc, ring_base, wed, flags);
if (IS_ERR(q))
return PTR_ERR(q);
phy->q_tx[qid] = q;
return 0;
}
static inline int mt76_init_mcu_queue(struct mt76_dev *dev, int qid, int idx,
int n_desc, int ring_base)
{
struct mt76_queue *q;
q = mt76_init_queue(dev, qid, idx, n_desc, ring_base, NULL, 0);
if (IS_ERR(q))
return PTR_ERR(q);
dev->q_mcu[qid] = q;
return 0;
}
static inline struct mt76_phy *
mt76_dev_phy(struct mt76_dev *dev, u8 phy_idx)
{
if ((phy_idx == MT_BAND1 && dev->phys[phy_idx]) ||
(phy_idx == MT_BAND2 && dev->phys[phy_idx]))
return dev->phys[phy_idx];
return &dev->phy;
}
static inline struct ieee80211_hw *
mt76_phy_hw(struct mt76_dev *dev, u8 phy_idx)
{
return mt76_dev_phy(dev, phy_idx)->hw;
}
static inline u8 *
mt76_get_txwi_ptr(struct mt76_dev *dev, struct mt76_txwi_cache *t)
{
return (u8 *)t - dev->drv->txwi_size;
}
/* increment with wrap-around */
static inline int mt76_incr(int val, int size)
{
return (val + 1) & (size - 1);
}
/* decrement with wrap-around */
static inline int mt76_decr(int val, int size)
{
return (val - 1) & (size - 1);
}
u8 mt76_ac_to_hwq(u8 ac);
static inline struct ieee80211_txq *
mtxq_to_txq(struct mt76_txq *mtxq)
{
void *ptr = mtxq;
return container_of(ptr, struct ieee80211_txq, drv_priv);
}
static inline struct ieee80211_sta *
wcid_to_sta(struct mt76_wcid *wcid)
{
void *ptr = wcid;
if (!wcid || !wcid->sta)
return NULL;
return container_of(ptr, struct ieee80211_sta, drv_priv);
}
static inline struct mt76_tx_cb *mt76_tx_skb_cb(struct sk_buff *skb)
{
BUILD_BUG_ON(sizeof(struct mt76_tx_cb) >
sizeof(IEEE80211_SKB_CB(skb)->status.status_driver_data));
return ((void *)IEEE80211_SKB_CB(skb)->status.status_driver_data);
}
static inline void *mt76_skb_get_hdr(struct sk_buff *skb)
{
struct mt76_rx_status mstat;
u8 *data = skb->data;
/* Alignment concerns */
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
mstat = *((struct mt76_rx_status *)skb->cb);
if (mstat.flag & RX_FLAG_RADIOTAP_HE)
data += sizeof(struct ieee80211_radiotap_he);
if (mstat.flag & RX_FLAG_RADIOTAP_HE_MU)
data += sizeof(struct ieee80211_radiotap_he_mu);
return data;
}
static inline void mt76_insert_hdr_pad(struct sk_buff *skb)
{
int len = ieee80211_get_hdrlen_from_skb(skb);
if (len % 4 == 0)
return;
skb_push(skb, 2);
memmove(skb->data, skb->data + 2, len);
skb->data[len] = 0;
skb->data[len + 1] = 0;
}
static inline bool mt76_is_skb_pktid(u8 pktid)
{
if (pktid & MT_PACKET_ID_HAS_RATE)
return false;
return pktid >= MT_PACKET_ID_FIRST;
}
static inline u8 mt76_tx_power_nss_delta(u8 nss)
{
static const u8 nss_delta[4] = { 0, 6, 9, 12 };
u8 idx = nss - 1;
return (idx < ARRAY_SIZE(nss_delta)) ? nss_delta[idx] : 0;
}
static inline bool mt76_testmode_enabled(struct mt76_phy *phy)
{
#ifdef CONFIG_NL80211_TESTMODE
return phy->test.state != MT76_TM_STATE_OFF;
#else
return false;
#endif
}
static inline bool mt76_is_testmode_skb(struct mt76_dev *dev,
struct sk_buff *skb,
struct ieee80211_hw **hw)
{
#ifdef CONFIG_NL80211_TESTMODE
int i;
for (i = 0; i < ARRAY_SIZE(dev->phys); i++) {
struct mt76_phy *phy = dev->phys[i];
if (phy && skb == phy->test.tx_skb) {
*hw = dev->phys[i]->hw;
return true;
}
}
return false;
#else
return false;
#endif
}
void mt76_rx(struct mt76_dev *dev, enum mt76_rxq_id q, struct sk_buff *skb);
void mt76_tx(struct mt76_phy *dev, struct ieee80211_sta *sta,
struct mt76_wcid *wcid, struct sk_buff *skb);
void mt76_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *txq);
void mt76_stop_tx_queues(struct mt76_phy *phy, struct ieee80211_sta *sta,
bool send_bar);
void mt76_tx_check_agg_ssn(struct ieee80211_sta *sta, struct sk_buff *skb);
void mt76_txq_schedule(struct mt76_phy *phy, enum mt76_txq_id qid);
void mt76_txq_schedule_all(struct mt76_phy *phy);
void mt76_tx_worker_run(struct mt76_dev *dev);
void mt76_tx_worker(struct mt76_worker *w);
void mt76_release_buffered_frames(struct ieee80211_hw *hw,
struct ieee80211_sta *sta,
u16 tids, int nframes,
enum ieee80211_frame_release_type reason,
bool more_data);
bool mt76_has_tx_pending(struct mt76_phy *phy);
void mt76_set_channel(struct mt76_phy *phy);
void mt76_update_survey(struct mt76_phy *phy);
void mt76_update_survey_active_time(struct mt76_phy *phy, ktime_t time);
int mt76_get_survey(struct ieee80211_hw *hw, int idx,
struct survey_info *survey);
int mt76_rx_signal(u8 chain_mask, s8 *chain_signal);
void mt76_set_stream_caps(struct mt76_phy *phy, bool vht);
int mt76_rx_aggr_start(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tid,
u16 ssn, u16 size);
void mt76_rx_aggr_stop(struct mt76_dev *dev, struct mt76_wcid *wcid, u8 tid);
void mt76_wcid_key_setup(struct mt76_dev *dev, struct mt76_wcid *wcid,
struct ieee80211_key_conf *key);
void mt76_tx_status_lock(struct mt76_dev *dev, struct sk_buff_head *list)
__acquires(&dev->status_lock);
void mt76_tx_status_unlock(struct mt76_dev *dev, struct sk_buff_head *list)
__releases(&dev->status_lock);
int mt76_tx_status_skb_add(struct mt76_dev *dev, struct mt76_wcid *wcid,
struct sk_buff *skb);
struct sk_buff *mt76_tx_status_skb_get(struct mt76_dev *dev,
struct mt76_wcid *wcid, int pktid,
struct sk_buff_head *list);
void mt76_tx_status_skb_done(struct mt76_dev *dev, struct sk_buff *skb,
struct sk_buff_head *list);
void __mt76_tx_complete_skb(struct mt76_dev *dev, u16 wcid, struct sk_buff *skb,
struct list_head *free_list);
static inline void
mt76_tx_complete_skb(struct mt76_dev *dev, u16 wcid, struct sk_buff *skb)
{
__mt76_tx_complete_skb(dev, wcid, skb, NULL);
}
void mt76_tx_status_check(struct mt76_dev *dev, bool flush);
int mt76_sta_state(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta,
enum ieee80211_sta_state old_state,
enum ieee80211_sta_state new_state);
void __mt76_sta_remove(struct mt76_dev *dev, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
void mt76_sta_pre_rcu_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
struct ieee80211_sta *sta);
int mt76_get_min_avg_rssi(struct mt76_dev *dev, bool ext_phy);
int mt76_get_txpower(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
int *dbm);
int mt76_init_sar_power(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar);
int mt76_get_sar_power(struct mt76_phy *phy,
struct ieee80211_channel *chan,
int power);
void mt76_csa_check(struct mt76_dev *dev);
void mt76_csa_finish(struct mt76_dev *dev);
int mt76_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
int mt76_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta, bool set);
void mt76_insert_ccmp_hdr(struct sk_buff *skb, u8 key_id);
int mt76_get_rate(struct mt76_dev *dev,
struct ieee80211_supported_band *sband,
int idx, bool cck);
void mt76_sw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
const u8 *mac);
void mt76_sw_scan_complete(struct ieee80211_hw *hw,
struct ieee80211_vif *vif);
enum mt76_dfs_state mt76_phy_dfs_state(struct mt76_phy *phy);
int mt76_testmode_cmd(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
void *data, int len);
int mt76_testmode_dump(struct ieee80211_hw *hw, struct sk_buff *skb,
struct netlink_callback *cb, void *data, int len);
int mt76_testmode_set_state(struct mt76_phy *phy, enum mt76_testmode_state state);
int mt76_testmode_alloc_skb(struct mt76_phy *phy, u32 len);
static inline void mt76_testmode_reset(struct mt76_phy *phy, bool disable)
{
#ifdef CONFIG_NL80211_TESTMODE
enum mt76_testmode_state state = MT76_TM_STATE_IDLE;
if (disable || phy->test.state == MT76_TM_STATE_OFF)
state = MT76_TM_STATE_OFF;
mt76_testmode_set_state(phy, state);
#endif
}
/* internal */
static inline struct ieee80211_hw *
mt76_tx_status_get_hw(struct mt76_dev *dev, struct sk_buff *skb)
{
struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
u8 phy_idx = (info->hw_queue & MT_TX_HW_QUEUE_PHY) >> 2;
struct ieee80211_hw *hw = mt76_phy_hw(dev, phy_idx);
info->hw_queue &= ~MT_TX_HW_QUEUE_PHY;
return hw;
}
void mt76_put_txwi(struct mt76_dev *dev, struct mt76_txwi_cache *t);
void mt76_put_rxwi(struct mt76_dev *dev, struct mt76_txwi_cache *t);
struct mt76_txwi_cache *mt76_get_rxwi(struct mt76_dev *dev);
void mt76_free_pending_rxwi(struct mt76_dev *dev);
void mt76_rx_complete(struct mt76_dev *dev, struct sk_buff_head *frames,
struct napi_struct *napi);
void mt76_rx_poll_complete(struct mt76_dev *dev, enum mt76_rxq_id q,
struct napi_struct *napi);
void mt76_rx_aggr_reorder(struct sk_buff *skb, struct sk_buff_head *frames);
void mt76_testmode_tx_pending(struct mt76_phy *phy);
void mt76_queue_tx_complete(struct mt76_dev *dev, struct mt76_queue *q,
struct mt76_queue_entry *e);
/* usb */
static inline bool mt76u_urb_error(struct urb *urb)
{
return urb->status &&
urb->status != -ECONNRESET &&
urb->status != -ESHUTDOWN &&
urb->status != -ENOENT;
}
static inline int
mt76u_bulk_msg(struct mt76_dev *dev, void *data, int len, int *actual_len,
int timeout, int ep)
{
struct usb_interface *uintf = to_usb_interface(dev->dev);
struct usb_device *udev = interface_to_usbdev(uintf);
struct mt76_usb *usb = &dev->usb;
unsigned int pipe;
if (actual_len)
pipe = usb_rcvbulkpipe(udev, usb->in_ep[ep]);
else
pipe = usb_sndbulkpipe(udev, usb->out_ep[ep]);
return usb_bulk_msg(udev, pipe, data, len, actual_len, timeout);
}
void mt76_ethtool_page_pool_stats(struct mt76_dev *dev, u64 *data, int *index);
void mt76_ethtool_worker(struct mt76_ethtool_worker_info *wi,
struct mt76_sta_stats *stats, bool eht);
int mt76_skb_adjust_pad(struct sk_buff *skb, int pad);
int __mt76u_vendor_request(struct mt76_dev *dev, u8 req, u8 req_type,
u16 val, u16 offset, void *buf, size_t len);
int mt76u_vendor_request(struct mt76_dev *dev, u8 req,
u8 req_type, u16 val, u16 offset,
void *buf, size_t len);
void mt76u_single_wr(struct mt76_dev *dev, const u8 req,
const u16 offset, const u32 val);
void mt76u_read_copy(struct mt76_dev *dev, u32 offset,
void *data, int len);
u32 ___mt76u_rr(struct mt76_dev *dev, u8 req, u8 req_type, u32 addr);
void ___mt76u_wr(struct mt76_dev *dev, u8 req, u8 req_type,
u32 addr, u32 val);
int __mt76u_init(struct mt76_dev *dev, struct usb_interface *intf,
struct mt76_bus_ops *ops);
int mt76u_init(struct mt76_dev *dev, struct usb_interface *intf);
int mt76u_alloc_mcu_queue(struct mt76_dev *dev);
int mt76u_alloc_queues(struct mt76_dev *dev);
void mt76u_stop_tx(struct mt76_dev *dev);
void mt76u_stop_rx(struct mt76_dev *dev);
int mt76u_resume_rx(struct mt76_dev *dev);
void mt76u_queues_deinit(struct mt76_dev *dev);
int mt76s_init(struct mt76_dev *dev, struct sdio_func *func,
const struct mt76_bus_ops *bus_ops);
int mt76s_alloc_rx_queue(struct mt76_dev *dev, enum mt76_rxq_id qid);
int mt76s_alloc_tx(struct mt76_dev *dev);
void mt76s_deinit(struct mt76_dev *dev);
void mt76s_sdio_irq(struct sdio_func *func);
void mt76s_txrx_worker(struct mt76_sdio *sdio);
bool mt76s_txqs_empty(struct mt76_dev *dev);
int mt76s_hw_init(struct mt76_dev *dev, struct sdio_func *func,
int hw_ver);
u32 mt76s_rr(struct mt76_dev *dev, u32 offset);
void mt76s_wr(struct mt76_dev *dev, u32 offset, u32 val);
u32 mt76s_rmw(struct mt76_dev *dev, u32 offset, u32 mask, u32 val);
u32 mt76s_read_pcr(struct mt76_dev *dev);
void mt76s_write_copy(struct mt76_dev *dev, u32 offset,
const void *data, int len);
void mt76s_read_copy(struct mt76_dev *dev, u32 offset,
void *data, int len);
int mt76s_wr_rp(struct mt76_dev *dev, u32 base,
const struct mt76_reg_pair *data,
int len);
int mt76s_rd_rp(struct mt76_dev *dev, u32 base,
struct mt76_reg_pair *data, int len);
struct sk_buff *
__mt76_mcu_msg_alloc(struct mt76_dev *dev, const void *data,
int len, int data_len, gfp_t gfp);
static inline struct sk_buff *
mt76_mcu_msg_alloc(struct mt76_dev *dev, const void *data,
int data_len)
{
return __mt76_mcu_msg_alloc(dev, data, data_len, data_len, GFP_KERNEL);
}
void mt76_mcu_rx_event(struct mt76_dev *dev, struct sk_buff *skb);
struct sk_buff *mt76_mcu_get_response(struct mt76_dev *dev,
unsigned long expires);
int mt76_mcu_send_and_get_msg(struct mt76_dev *dev, int cmd, const void *data,
int len, bool wait_resp, struct sk_buff **ret);
int mt76_mcu_skb_send_and_get_msg(struct mt76_dev *dev, struct sk_buff *skb,
int cmd, bool wait_resp, struct sk_buff **ret);
int __mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const void *data,
int len, int max_len);
static inline int
mt76_mcu_send_firmware(struct mt76_dev *dev, int cmd, const void *data,
int len)
{
int max_len = 4096 - dev->mcu_ops->headroom;
return __mt76_mcu_send_firmware(dev, cmd, data, len, max_len);
}
static inline int
mt76_mcu_send_msg(struct mt76_dev *dev, int cmd, const void *data, int len,
bool wait_resp)
{
return mt76_mcu_send_and_get_msg(dev, cmd, data, len, wait_resp, NULL);
}
static inline int
mt76_mcu_skb_send_msg(struct mt76_dev *dev, struct sk_buff *skb, int cmd,
bool wait_resp)
{
return mt76_mcu_skb_send_and_get_msg(dev, skb, cmd, wait_resp, NULL);
}
void mt76_set_irq_mask(struct mt76_dev *dev, u32 addr, u32 clear, u32 set);
struct device_node *
mt76_find_power_limits_node(struct mt76_dev *dev);
struct device_node *
mt76_find_channel_node(struct device_node *np, struct ieee80211_channel *chan);
s8 mt76_get_rate_power_limits(struct mt76_phy *phy,
struct ieee80211_channel *chan,
struct mt76_power_limits *dest,
s8 target_power);
static inline bool mt76_queue_is_rx(struct mt76_dev *dev, struct mt76_queue *q)
{
int i;
for (i = 0; i < ARRAY_SIZE(dev->q_rx); i++) {
if (q == &dev->q_rx[i])
return true;
}
return false;
}
static inline bool mt76_queue_is_wed_tx_free(struct mt76_queue *q)
{
return (q->flags & MT_QFLAG_WED) &&
FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_Q_TXFREE;
}
static inline bool mt76_queue_is_wed_rro(struct mt76_queue *q)
{
return q->flags & MT_QFLAG_WED_RRO;
}
static inline bool mt76_queue_is_wed_rro_ind(struct mt76_queue *q)
{
return mt76_queue_is_wed_rro(q) &&
FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_RRO_Q_IND;
}
static inline bool mt76_queue_is_wed_rro_data(struct mt76_queue *q)
{
return mt76_queue_is_wed_rro(q) &&
(FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_RRO_Q_DATA ||
FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_RRO_Q_MSDU_PG);
}
static inline bool mt76_queue_is_wed_rx(struct mt76_queue *q)
{
if (!(q->flags & MT_QFLAG_WED))
return false;
return FIELD_GET(MT_QFLAG_WED_TYPE, q->flags) == MT76_WED_Q_RX ||
mt76_queue_is_wed_rro_ind(q) || mt76_queue_is_wed_rro_data(q);
}
struct mt76_txwi_cache *
mt76_token_release(struct mt76_dev *dev, int token, bool *wake);
int mt76_token_consume(struct mt76_dev *dev, struct mt76_txwi_cache **ptxwi);
void __mt76_set_tx_blocked(struct mt76_dev *dev, bool blocked);
struct mt76_txwi_cache *mt76_rx_token_release(struct mt76_dev *dev, int token);
int mt76_rx_token_consume(struct mt76_dev *dev, void *ptr,
struct mt76_txwi_cache *r, dma_addr_t phys);
int mt76_create_page_pool(struct mt76_dev *dev, struct mt76_queue *q);
static inline void mt76_put_page_pool_buf(void *buf, bool allow_direct)
{
struct page *page = virt_to_head_page(buf);
page_pool_put_full_page(page->pp, page, allow_direct);
}
static inline void *
mt76_get_page_pool_buf(struct mt76_queue *q, u32 *offset, u32 size)
{
struct page *page;
page = page_pool_dev_alloc_frag(q->page_pool, offset, size);
if (!page)
return NULL;
return page_address(page) + *offset;
}
static inline void mt76_set_tx_blocked(struct mt76_dev *dev, bool blocked)
{
spin_lock_bh(&dev->token_lock);
__mt76_set_tx_blocked(dev, blocked);
spin_unlock_bh(&dev->token_lock);
}
static inline int
mt76_token_get(struct mt76_dev *dev, struct mt76_txwi_cache **ptxwi)
{
int token;
spin_lock_bh(&dev->token_lock);
token = idr_alloc(&dev->token, *ptxwi, 0, dev->token_size, GFP_ATOMIC);
spin_unlock_bh(&dev->token_lock);
return token;
}
static inline struct mt76_txwi_cache *
mt76_token_put(struct mt76_dev *dev, int token)
{
struct mt76_txwi_cache *txwi;
spin_lock_bh(&dev->token_lock);
txwi = idr_remove(&dev->token, token);
spin_unlock_bh(&dev->token_lock);
return txwi;
}
void mt76_wcid_init(struct mt76_wcid *wcid);
void mt76_wcid_cleanup(struct mt76_dev *dev, struct mt76_wcid *wcid);
#endif