Also change the alignment of the percpu hot section:
- PERCPU_SECTION(INTERNODE_CACHE_BYTES)
+ PERCPU_SECTION(L1_CACHE_BYTES)
As vSMP will muck with INTERNODE_CACHE_BYTES that invalidates the
too-large-section assert we do:
ASSERT(__per_cpu_hot_end - __per_cpu_hot_start <= 64, "percpu cache hot section too large")
[ mingo: Added INTERNODE_CACHE_BYTES fix & explanation. ]
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Uros Bizjak <ubizjak@gmail.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20250303165246.2175811-3-brgerst@gmail.com
smp_store_cpu_info() is just a wrapper around identify_secondary_cpu()
without further value.
Move the extra bits from smp_store_cpu_info() into identify_secondary_cpu()
and remove the wrapper.
[ darwi: Make it compile and fix up the xen/smp_pv.c instance ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250304085152.51092-9-darwi@linutronix.de
Commit:
e0ba94f14f ("x86/tlb_info: get last level TLB entry number of CPU")
introduced u16 "info" arrays for each TLB type.
Since 2012 and each array stores just one type of information: the
number of TLB entries for its respective TLB type.
Replace such arrays with simple variables.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20250304085152.51092-8-darwi@linutronix.de
Commit 814165e9fd ("x86/cpu: Add the 'setcpuid=' boot parameter")
recently expanded the user's ability to break their system horribly by
overriding effective CPU flags. This was reflected with updates to the
documentation to try and make people aware that this is dangerous.
To further reduce the risk of users mistaking this for a "real feature",
and try to help them figure out why their kernel is tainted if they do
use it:
- Upgrade the existing printk to pr_warn, to help ensure kernel logs
reflect what changes are in effect.
- Print an extra warning that tries to be as dramatic as possible, while
also highlighting the fact that it tainted the kernel.
Suggested-by: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250303-setcpuid-taint-louder-v1-2-8d255032cb4c@google.com
Fix some related issues (done in a single patch to avoid introducing
intermediate bisect warnings):
1) The SMP version of mwait_play_dead() doesn't return, but its
!SMP counterpart does. Make its calling behavior consistent by
resolving the !SMP version to a BUG(). It should never be called
anyway, this just enforces that at runtime and enables its callers
to be marked as __noreturn.
2) While the SMP definition of mwait_play_dead() is annotated as
__noreturn, the declaration isn't. Nor is it listed in
tools/objtool/noreturns.h. Fix that.
3) Similar to #1, the SMP version of acpi_processor_ffh_play_dead()
doesn't return but its !SMP counterpart does. Make the !SMP
version a BUG(). It should never be called.
4) acpi_processor_ffh_play_dead() doesn't return, but is lacking any
__noreturn annotations. Fix that.
This fixes the following objtool warnings:
vmlinux.o: warning: objtool: acpi_processor_ffh_play_dead+0x67: mwait_play_dead() is missing a __noreturn annotation
vmlinux.o: warning: objtool: acpi_idle_play_dead+0x3c: acpi_processor_ffh_play_dead() is missing a __noreturn annotation
Fixes: a7dd183f0b ("x86/smp: Allow calling mwait_play_dead with an arbitrary hint")
Fixes: 541ddf31e3 ("ACPI/processor_idle: Add FFH state handling")
Reported-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/e885c6fa9e96a61471b33e48c2162d28b15b14c5.1740962711.git.jpoimboe@kernel.org
CPUID leaf 0x2's one-byte TLB descriptors report the number of entries
for specific TLB types, among other properties.
Typically, each emitted descriptor implies the same number of entries
for its respective TLB type(s). An emitted 0x63 descriptor is an
exception: it implies 4 data TLB entries for 1GB pages and 32 data TLB
entries for 2MB or 4MB pages.
For the TLB descriptors parsing code, the entry count for 1GB pages is
encoded at the intel_tlb_table[] mapping, but the 2MB/4MB entry count is
totally ignored.
Update leaf 0x2's parsing logic 0x2 to account for 32 data TLB entries
for 2MB/4MB pages implied by the 0x63 descriptor.
Fixes: e0ba94f14f ("x86/tlb_info: get last level TLB entry number of CPU")
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250304085152.51092-4-darwi@linutronix.de
CPUID leaf 0x2 emits one-byte descriptors in its four output registers
EAX, EBX, ECX, and EDX. For these descriptors to be valid, the most
significant bit (MSB) of each register must be clear.
Leaf 0x2 parsing at intel.c only validated the MSBs of EAX, EBX, and
ECX, but left EDX unchecked.
Validate EDX's most-significant bit as well.
Fixes: e0ba94f14f ("x86/tlb_info: get last level TLB entry number of CPU")
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250304085152.51092-3-darwi@linutronix.de
CPUID leaf 0x2 emits one-byte descriptors in its four output registers
EAX, EBX, ECX, and EDX. For these descriptors to be valid, the most
significant bit (MSB) of each register must be clear.
The historical Git commit:
019361a20f016 ("- pre6: Intel: start to add Pentium IV specific stuff (128-byte cacheline etc)...")
introduced leaf 0x2 output parsing. It only validated the MSBs of EAX,
EBX, and ECX, but left EDX unchecked.
Validate EDX's most-significant bit.
Signed-off-by: Ahmed S. Darwish <darwi@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250304085152.51092-2-darwi@linutronix.de
The safe_smp_processor_id() function was originally implemented in:
dc2bc768a0 ("stack overflow safe kdump: safe_smp_processor_id()")
to mitigate the CPU number corruption on a stack overflow. At the time,
x86-32 stored the CPU number in thread_struct, which was located at the
bottom of the task stack and thus vulnerable to an overflow.
The CPU number is now located in percpu memory, so this workaround
is no longer needed.
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lore.kernel.org/r/20250303170115.2176553-1-brgerst@gmail.com
Change the default value of spectre v2 in user mode to respect the
CONFIG_MITIGATION_SPECTRE_V2 config option.
Currently, user mode spectre v2 is set to auto
(SPECTRE_V2_USER_CMD_AUTO) by default, even if
CONFIG_MITIGATION_SPECTRE_V2 is disabled.
Set the spectre_v2 value to auto (SPECTRE_V2_USER_CMD_AUTO) if the
Spectre v2 config (CONFIG_MITIGATION_SPECTRE_V2) is enabled, otherwise
set the value to none (SPECTRE_V2_USER_CMD_NONE).
Important to say the command line argument "spectre_v2_user" overwrites
the default value in both cases.
When CONFIG_MITIGATION_SPECTRE_V2 is not set, users have the flexibility
to opt-in for specific mitigations independently. In this scenario,
setting spectre_v2= will not enable spectre_v2_user=, and command line
options spectre_v2_user and spectre_v2 are independent when
CONFIG_MITIGATION_SPECTRE_V2=n.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: David Kaplan <David.Kaplan@amd.com>
Link: https://lore.kernel.org/r/20241031-x86_bugs_last_v2-v2-2-b7ff1dab840e@debian.org
There is a helper function to check if SMT is available. Use this helper
instead of performing the check manually.
The helper function cpu_smt_possible() does exactly the same thing as
was being done manually inside spectre_v2_user_select_mitigation().
Specifically, it returns false if CONFIG_SMP is disabled, otherwise
it checks the cpu_smt_control global variable.
This change improves code consistency and reduces duplication.
No change in functionality intended.
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: David Kaplan <David.Kaplan@amd.com>
Link: https://lore.kernel.org/r/20241031-x86_bugs_last_v2-v2-1-b7ff1dab840e@debian.org
Add AUTO mitigations for mds/taa/mmio/rfds to create consistent vulnerability
handling. These AUTO mitigations will be turned into the appropriate default
mitigations in the <vuln>_select_mitigation() functions. Later, these will be
used with the new attack vector controls to help select appropriate
mitigations.
Signed-off-by: David Kaplan <david.kaplan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250108202515.385902-4-david.kaplan@amd.com
All CPU vulnerabilities with command line options map to a single X86_BUG bit
except for Spectre V2 where both the spectre_v2 and spectre_v2_user command
line options are related to the same bug.
The spectre_v2 command line options mostly relate to user->kernel and
guest->host mitigations, while the spectre_v2_user command line options relate
to user->user or guest->guest protections.
Define a new X86_BUG bit for spectre_v2_user so each *_select_mitigation()
function in bugs.c is related to a unique X86_BUG bit.
No functional changes.
Signed-off-by: David Kaplan <david.kaplan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20250108202515.385902-2-david.kaplan@amd.com
Sometimes it can be very useful to run CPU vulnerability mitigations on
systems where they aren't known to mitigate any real-world
vulnerabilities. This can be handy for mundane reasons like debugging
HW-agnostic logic on whatever machine is to hand, but also for research
reasons: while some mitigations are focused on individual vulns and
uarches, others are fairly general, and it's strategically useful to
have an idea how they'd perform on systems where they aren't currently
needed.
As evidence for this being useful, a flag specifically for Retbleed was
added in:
5c9a92dec3 ("x86/bugs: Add retbleed=force").
Since CPU bugs are tracked using the same basic mechanism as features,
and there are already parameters for manipulating them by hand, extend
that mechanism to support bug as well as capabilities.
With this patch and setcpuid=srso, a QEMU guest running on an Intel host
will boot with Safe-RET enabled.
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20241220-force-cpu-bug-v2-3-7dc71bce742a@google.com
In preparation for adding support to inject fake CPU bugs at boot-time,
add a general facility to force enablement of CPU flags.
The flag taints the kernel and the documentation attempts to be clear
that this is highly unsuitable for uses outside of kernel development
and platform experimentation.
The new arg is parsed just like clearcpuid, but instead of leading to
setup_clear_cpu_cap() it leads to setup_force_cpu_cap().
I've tested this by booting a nested QEMU guest on an Intel host, which
with setcpuid=svm will claim that it supports AMD virtualization.
Signed-off-by: Brendan Jackman <jackmanb@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20241220-force-cpu-bug-v2-2-7dc71bce742a@google.com
When running in a virtual machine, we might see the original hardware CPU
vendor string (i.e. "AuthenticAMD"), but a model and family ID set by the
hypervisor. In case we run on AMD hardware and the hypervisor sets a model
ID < 0x14, the LAHF cpu feature is eliminated from the the list of CPU
capabilities present to circumvent a bug with some BIOSes in conjunction with
AMD K8 processors.
Parsing the flags list from /proc/cpuinfo seems to be happening mostly in
bash scripts and prebuilt Docker containers, as it does not need to have
additionals tools present – even though more reliable ways like using "kcpuid",
which calls the CPUID instruction instead of parsing a list, should be preferred.
Scripts, that use /proc/cpuinfo to determine if the current CPU is
"compliant" with defined microarchitecture levels like x86-64-v2 will falsely
claim the CPU is incapable of modern CPU instructions when "lahf_lm" is missing
in that flags list.
This can prevent some docker containers from starting or build scripts to create
unoptimized binaries.
Admittably, this is more a small inconvenience than a severe bug in the kernel
and the shoddy scripts that rely on parsing /proc/cpuinfo
should be fixed instead.
This patch adds an additional check to see if we're running inside a
virtual machine (X86_FEATURE_HYPERVISOR is present), which, to my
understanding, can't be present on a real K8 processor as it was introduced
only with the later/other Athlon64 models.
Example output with the "lahf_lm" flag missing in the flags list
(should be shown between "hypervisor" and "abm"):
$ cat /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 15
model : 6
model name : Common KVM processor
stepping : 1
microcode : 0x1000065
cpu MHz : 2599.998
cache size : 512 KB
physical id : 0
siblings : 1
core id : 0
cpu cores : 1
apicid : 0
initial apicid : 0
fpu : yes
fpu_exception : yes
cpuid level : 13
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx rdtscp
lm rep_good nopl cpuid extd_apicid tsc_known_freq pni
pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 x2apic movbe popcnt
tsc_deadline_timer aes xsave avx f16c hypervisor abm
3dnowprefetch vmmcall bmi1 avx2 bmi2 xsaveopt
... while kcpuid shows the feature to be present in the CPU:
# kcpuid -d | grep lahf
lahf_lm - LAHF/SAHF available in 64-bit mode
[ mingo: Updated the comment a bit, incorporated Boris's review feedback. ]
Signed-off-by: Max Grobecker <max@grobecker.info>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
Cc: Borislav Petkov <bp@alien8.de>
The first GDT descriptor is reserved as 'NULL descriptor'. As bits 0
and 1 of a segment selector, i.e., the RPL bits, are NOT used to index
GDT, selector values 0~3 all point to the NULL descriptor, thus values
0, 1, 2 and 3 are all valid NULL selector values.
When a NULL selector value is to be loaded into a segment register,
reload_segments() sets its RPL bits. Later IRET zeros ES, FS, GS, and
DS segment registers if any of them is found to have any nonzero NULL
selector value. The two operations offset each other to actually effect
a nop.
Besides, zeroing of RPL in NULL selector values is an information leak
in pre-FRED systems as userspace can spot any interrupt/exception by
loading a nonzero NULL selector, and waiting for it to become zero.
But there is nothing software can do to prevent it before FRED.
ERETU, the only legit instruction to return to userspace from kernel
under FRED, by design does NOT zero any segment register to avoid this
problem behavior.
As such, leave NULL selector values 0~3 unchanged and close the leak.
Do the same on 32-bit kernel as well.
Signed-off-by: Xin Li (Intel) <xin@zytor.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Link: https://lore.kernel.org/r/20241126184529.1607334-1-xin@zytor.com
print_xstate_features() currently invokes print_xstate_feature() multiple
times on separate lines, which can be simplified in a loop.
print_xstate_feature() already checks the feature's enabled status and is
only called within print_xstate_features(). Inline print_xstate_feature()
and iterate over features in a loop to streamline the enabling message.
No functional changes.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20250227184502.10288-2-chang.seok.bae@intel.com
Before restoring xstate from the user space buffer, the kernel performs
sanity checks on these magic numbers: magic1 in the software reserved
area, and magic2 at the end of XSAVE region.
The position of magic2 is calculated based on the xstate size derived
from the user space buffer. But, the in-kernel record is directly
available and reliable for this purpose.
This reliance on user space data is also inconsistent with the recent
fix in:
d877550eaf ("x86/fpu: Stop relying on userspace for info to fault in xsave buffer")
Simply use fpstate->user_size, and then get rid of unnecessary
size-evaluation code.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20241211014500.3738-1-chang.seok.bae@intel.com
The x86-32 kernel used to support multiple platforms with more than eight
logical CPUs, from the 1999-2003 timeframe: Sequent NUMA-Q, IBM Summit,
Unisys ES7000 and HP F8. Support for all except the latter was dropped
back in 2014, leaving only the F8 based DL740 and DL760 G2 machines in
this catery, with up to eight single-core Socket-603 Xeon-MP processors
with hyperthreading.
Like the already removed machines, the HP F8 servers at the time cost
upwards of $100k in typical configurations, but were quickly obsoleted
by their 64-bit Socket-604 cousins and the AMD Opteron.
Earlier servers with up to 8 Pentium Pro or Xeon processors remain
fully supported as they had no hyperthreading. Similarly, the more
common 4-socket Xeon-MP machines with hyperthreading using Intel
or ServerWorks chipsets continue to work without this, and all the
multi-core Xeon processors also run 64-bit kernels.
While the "bigsmp" support can also be used to run on later 64-bit
machines (including VM guests), it seems best to discourage that
and get any remaining users to update their kernels to 64-bit builds
on these. As a side-effect of this, there is also no more need to
support NUMA configurations on 32-bit x86, as all true 32-bit
NUMA platforms are already gone.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20250226213714.4040853-3-arnd@kernel.org
We are going to apply a new series that conflicts with pending
work in x86/mm, so merge in x86/mm to avoid it, and also to
refresh the x86/cpu branch with fixes.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
X86_FEATURE_USE_IBPB was introduced in:
2961298efe ("x86/cpufeatures: Clean up Spectre v2 related CPUID flags")
to have separate flags for when the CPU supports IBPB (i.e. X86_FEATURE_IBPB)
and when an IBPB is actually used to mitigate Spectre v2.
Ever since then, the uses of IBPB expanded. The name became confusing
because it does not control all IBPB executions in the kernel.
Furthermore, because its name is generic and it's buried within
indirect_branch_prediction_barrier(), it's easy to use it not knowing
that it is specific to Spectre v2.
X86_FEATURE_USE_IBPB is no longer needed because all the IBPB executions
it used to control are now controlled through other means (e.g.
switch_mm_*_ibpb static branches).
Remove the unused feature bit.
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20250227012712.3193063-7-yosry.ahmed@linux.dev
Instead of using X86_FEATURE_USE_IBPB to guard the IBPB execution in KVM
when a new vCPU is loaded, introduce a static branch, similar to
switch_mm_*_ibpb.
This makes it obvious in spectre_v2_user_select_mitigation() what
exactly is being toggled, instead of the unclear X86_FEATURE_USE_IBPB
(which will be shortly removed). It also provides more fine-grained
control, making it simpler to change/add paths that control the IBPB in
the vCPU switch path without affecting other IBPBs.
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Acked-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20250227012712.3193063-5-yosry.ahmed@linux.dev
If X86_FEATURE_USE_IBPB is not set, then both spectre_v2_user_ibpb and
spectre_v2_user_stibp are set to SPECTRE_V2_USER_NONE in
spectre_v2_user_select_mitigation(). Since ib_prctl_set() already checks
for this before performing the IBPB, the X86_FEATURE_USE_IBPB check is
redundant. Remove it.
Signed-off-by: Yosry Ahmed <yosry.ahmed@linux.dev>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20250227012712.3193063-4-yosry.ahmed@linux.dev